
Goal-Directed Interactions in Artifact-Based MAS:
Jadex Agents playing in CARTAGO Environments

Michele Piunti, Alessandro Ricci
DEIS

Università di Bologna
Sede di Cesena, Italy

{michele.piunti | a.ricci}@unibo.it

Lars Braubach, Alexander Pokahr
Distributed and Information Systems

Computer Science Department
University of Hamburg, Germany.

{braubach | pokahr}@informatik.uni-hamburg.de

Abstract

In the context of cognitive agent programming frame-
works, a main research effort accounts for exploiting goal-
orientation for specifying and enacting agent interaction. Ex-
isting research work focuses almost totally on direct com-
munication models, typically based on speech-acts and FIPA
ACL. In this paper we focus instead on mediated interactions,
and in particular on interaction taking place in artifact-
based environments, where artifacts are first-class mediating
tools that are used by cognitive agents in goal-directed way.
The investigation is concretely supported by integrating the
Jadex platform (enrolling the Belief-Desire-Intention model
of agency) with the CARTAGO technology (enabling the de-
sign of artifact based environments).

1. Introduction
Interaction is a primary aspect of Multi-Agent Systems
(MAS), and interaction models and mechanisms are funda-
mental elements in the design and programming of any non-
naive MAS application. In the context of agent program-
ming frameworks, interaction models are typically designed
on the basis of direct communication based on speech-act,
protocols and conversations: a main research effort here aims
at exploiting cognitive models and agent’s goal-orientation
for specifying interaction protocols (see [2] for a survey).
This made it possible for developers to focus on aspects re-
lated to the problem domain, more than on the specifica-
tion of lower level details of message passing. Besides di-
rect speech-based communication, recent research works re-
marked the value of environment-mediated interaction mod-
els. This approach promotes the environment abstraction to
be exploited as a suitable locus to encapsulate services and
functionalities. Accordingly it has been assumed to improve
particular agent interaction, coordination, and cooperation
activities (see [19] for a survey). Among the various ap-

proaches, the “Agents and Artifacts” model (A&A) introduces
first-class abstractions called artifacts to design and program
those functional parts of a MAS in terms of workspaces with
computational resources and tools that agents can share and
co-use to attain their goals. Analogously to artifacts in hu-
man cooperative environments, A&A artifacts are conceived
to support cognitive agents in their individual and collective
tasks [15, 12]. From a software engineering perspective, the
A&A provides a general methodology to structure and pro-
gram the agent computational environment inside the MAS,
and then—thinking in particular to coordination artifacts—
the agent interaction space besides message based interaction
protocols.

The aim of this paper is to extend the issue of goal-
oriented interaction, as devised for protocol based message
exchange, to include also mediated kinds of interaction in
artifact-based environments. In this respect, artifacts can
be seen by agents as middleware facilities, allowing various
forms of mediated or supervised interaction, and represent-
ing an alternative mean to extend agent communication and
cooperation besides direct message-based protocols. In par-
ticular, this paper investigates goal-directed use of artifacts
for mediated interactions in MAS, assumed as open working
environments where heterogeneous agents can share activi-
ties and interact through the same artifacts. For this purpose
different kinds of artifacts use will be sketched. We thus de-
scribe the integration of Jadex, a programming platform for
BDI agents [13], and CARTAGO, an infrastructure providing
a programming model and executable framework for building
and running A&A environments [16].

By adopting the notion of goal directedness, we place here
an important distinction between actual approaches in cog-
nitive agent design. In fact, abilities to handle goals tradi-
tionally are variously characterized by agent platforms us-
ing procedural or declarative goals [17]. Differently from
other BDI inspired systems which have already been inte-
grated in CARTAGO [14], Jadex makes us possible to im-
prove agent/artifact interaction at an higher cognitive level.

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

Unrecognized Copyright Information

DOI 10.1109/WIIAT.2008.349

174

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

Unrecognized Copyright Information

DOI 10.1109/WIIAT.2008.349

174

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

Unrecognized Copyright Information

DOI 10.1109/WIIAT.2008.349

207

As showed in Section 3, Jadex declarative goals are pro-
cessed upon an event based execution model allowing more
flexible form of deliberation and reasoning [4]. Besides,
Jadex pivotal reasoning processes as goal adoption and plan
selection can be governed by customizable internal events,
which in turns can be targeted on the basis of the events com-
ing from artifacts. Finally, Jadex adopted the notion of ca-
pability as external and reusable components programmable
in goal directed fashion [3], thus allowing the developer to
focus on domain objectives and scale complex interactions
details. The programming model has been discussed through
a contract-net based negotiation where agents interactions are
mediated by artifacts, analogously to the approach based on
direct communication described in [2].

2. Artifact-Based Environments
One of the main concepts put forward by Activity The-
ory [10] –along with Distributed Cognition and other move-
ments inside cognitive science– is that artifacts and tools, in
human societies, play a pivotal role in coping with the scaling
up of complexity, in particular when social activities are con-
cerned. Inspired by Activity Theory, the A&A approach in-
troduces the notion of artifact as first-class abstraction along
with agents in MAS, to model and design those resources and
tools that are eventually used by agents to perform their ac-
tivities and cooperate. Examples in MAS range from black-
boards, task schedulers, calendars – as kinds of coordination
artifacts– to shared knowledge bases, maps, device wrap-
pers as kinds of informational resources. Differently from
agents, which in their strong notion are autonomous and goal-
oriented entities, artifacts are non-autonomous, function-
oriented entities, that can be used by agents though suitable
usage interface that control their behaviour.

The set of artifacts in a MAS are organised in terms of
workspaces, defining the topology of the work environment
where agents are logically situated and works creating, shar-
ing, using, and manipulating artifacts as first-class environ-
ment building blocks. The next sections briefly describe basic
notions of CARTAGO, a framework to develop MAS based
on A&A notions. More on A&A as a meta-model can be found
in [11, 15].

2.1. A Programming Model and Infrastructure
for Artifacts: CARTAGO

CARTAGO (CommonARtifact Infrastructure for AGent
Open environment) is a framework/infrastructure based
on A&A meta-model, providing a concrete programming
model and (Java-based) technology1 for building and run-
ning artifact-based environments in MAS [16]. Essentially,
CARTAGO provides: (a) a basic API to program artifacts

1CARTAGO is an open source project, available at http://
cartago.sourceforge.org.

according to a programming model briefly accounted in next
section; (b) a basic set of API to be used on the agent side
to work within artifact-based environments, with actions for
using, observing, manipulating artifacts; (c) a runtime dis-
tributed (Java-based) system to execute and manage artifact-
based environments.

A foremost important aspect of CARTAGO is its orthog-
onality with respect to agent models and platforms. Ac-
cordingly, the technology has been designed to be integrated
with existing agent platforms, so to enable the development
of open MAS with agents belonging to heterogeneous plat-
forms working together within common artifact-based envi-
ronments [14].

The integration is based on the notion of agent body con-
ceived as that part of an agent conceptually belonging to a
workspace (once the agent is inside it). Agent body contains
logical sensory-motor capabilities to interact with artifacts
(see Figure 1), and which is controlled by the agent mind,
programmed and executed on top of some external agent plat-
form. By following a cognitive approach, agent body is as-
sumed to provide agents with actuators to execute actions
(i.e., to manage workspaces or act upon (use) artifacts) and
sensors to perceive noticeable events (i.e., to proactively keep
track of observable events generated by artifacts, possibly ap-
plying filters and specific kinds of “buffering” policies). Ac-
cording to the specific interaction modality adopted for using
and observing artifacts, agents are provided with basic inter-
nal actions for managing and inspecting sensors residing in
their body, as a kind of external working memory. In doing
so, an agent can organize in a flexible way the perception of
interleaved observable events, possibly generated by multiple
artifacts that the agent is using for different, even concurrent,
activities.

2.2. Artifact Based Contract-Net
As an example clarifying the artifact programming model in
CARTAGO, we describe here a book-trading scenario based
on contract-net analogous to the one described in [2]: here –
differently from original specification where interactions are
message based [8]– interactions between buyer and seller
agents have been conceived as mediated by artifacts coordi-
nating agent activities2.

To this end, a contract-net workspace has been conceived
to constitute the basic working environment of the system.
Two instances of artifacts have been deployed in the contract-
net workspace: BuyerBoard (instrumental to buyer activi-
ties) and SellerBoard (instrumental to sellers activities).
They are assumed (i) to mediate agent-agent interactions and
(ii) to provide agents with additional means to attain their
goals. Following the CARTAGO programming model, ar-
tifact functionalities are structured in terms of operations,

2The example is assumed to provide a case study to enlighten the pro-
gramming model behind Jadex-CARTAGO interactions. A detailed discus-
sion on the contract-net problem is beyond the scope of this paper.

175175208

Figure 1. Contract-net workspace with Buyer-
Board and SellerBoard artifacts, with in evi-
dence usage and link interfaces.

whose execution can be triggered/invoked by agents by act-
ing on their usage interface. The usage interface is composed
by a set of operation controls, each identified by a label (typ-
ically equals to the operation name) and a list of input pa-
rameters (in Figure 1, parameters are omitted for brevity).
BuyerBoard exposes a MakeCfp operation to initiate a
call for proposal (cfp), RetrieveProp to retrieve propos-
als for a given cfp BuyBook, to purchase an item from a
given seller, and GiveFeedb, by which the buyer can pro-
vide a reputation feedback about quality of service. On the
other side, SellerBoard provides a usage interface with
Register, by which a seller can register to the contract-
net, MakeProposal, to make a sale proposal for a given
book request, and DeliverBook, to finally deliver the pur-
chased book. The execution of an operation upon an arti-
fact can result both in changing the artifact’s inner (i.e. non-
observable) state, and in the generation of a stream of ob-
servable events that can be perceived by agents through their
perceptive activities. Observable events rise as the result of
an operation usage. They convey non-persistent information
and signals carrying some additional information content in
form of agent readable percepts. Interested readers can find
elsewhere the detailed model related to operation triggering
and execution, in particular with respect to synchronisation
and concurrency [15].

Besides controls, the usage interface might contain also
a set of observable properties, as persistent symbolic prop-
erties whose dynamic values can be intentionally read by
agents without practically operating upon the artifact con-
trols. BuyerBoard, for instance, contains an observable
property about the seller’s reputation (in this case, reputation
collects a simple list of values in [0,1], which can be related
to the various sellers). Additional observable events perciev-
able by agents are supposed to signal changes in observable
properties.

Finally, artifacts can be linked together (by agents, in par-

ticular) so as to enable inter-artifact interactions and artifact
compositionality. For this purpose, an artifact may expose –
besides the usage interface– a link interface, including those
operations that can be triggered solely by artifacts that have
been linked to it. In the contract-net example, artifacts are
linked in order to maintain a consistent view of the problem
domain for their users: once a buyer initiates a cfp (i.e. by us-
ing a MakeCfp upon his board) the links guarantee changes
to be propagated to the SellerBoard –and thus consis-
tently retrieved by the sellers– by triggering the Request
link operation (see Figure 1).

3. Goal-Directed Use of Artifacts
In this section interaction approaches for artifacts and goal
directed agents will be discussed. A non invasive integration
will be detailed for the Jadex platform.

3.1. BDI Programming Model in Jadex
Originally proposed as a conceptual model to explain cogni-
tive behavior [1], the Belief-Desire-Intention model assumes
that rational actions can be derived from desires (motiva-
tional states), beliefs (epistemic states) and intentions (prac-
tical activities the agent is committing to attain goals). The
process for deducing actions given these mental attitudes
is called practical reasoning and consists of two different
phases [21]. The goal deliberation phase has the purpose
to select a consistent subset of goals for further processing,
while the means-end reasoning phase is responsible for find-
ing ways to achieve the adopted goals.

Using technologies like XML and Java, Jadex3 natively
faces with BDI notions such as plans, beliefs and goals. The
Jadex execution model uncouples goal processing from plan
execution. It assumes that declarative goals are defined to
express the world states to achieve, while plans contain the
procedural code for their realization. At runtime an agent can
possess an alternating hierarchy of goals and plans, which
emerge from top-level goals over plans to subgoals and so
forth.

We guess using goals as an explicit part of the program-
ming model has key advantages. First, differently from plans
which in turn constitute the agent’s reactive abilities, goals
have a proper processing ruled by deliberation mechanisms.
This on the one side promotes a more flexible deliberation
mechanism and, on the other side, allows to scale up means-
end processes (as intention reconsideration and action selec-
tion) allowing agents to be situated and targeted in the context
of goal processing. Then, means-end reasoning phases in-
troduce a flexible plan-based machinery for achieving goals.
For any given goal description, a list of applicable plans

3Jadex is an open source project for implementing BDI agents
available at: http://vsis-www.informatik.uni-hamburg.
de/projects/jadex/.

176176209

is searched and ranked according to a customizable policy.
Then the highest ranked plan is executed and if the goal
could not be attained by this plan the process starts over again
and looks for the next plan to execute until no more options
(plans) are available (see [4, 13] for more details).

Second, since Jadex goals are declarative they can be
compared, evaluated, appraised and eventually updated upon
their completion [4]. Given goal representations, agents
can handle on-line gloal processing, for instance appraising
mismatches and possibly introducing recovery and learning
mechanisms. In these terms, Jadex goals can be exploited as
mental states and used to reason in anticipatory terms (i.e.
making decisions not only on the basis of what is believed
but also on what is desired to be in the future).

3.2. Introducing Jadex Capabilities for Agent-
Artifact Interactions

Following a cognitive approach, we consider basic sensory-
motor aspects to allow Jadex agents to play in CARTAGO
environments. On the one hand, agents need mechanisms
to practically interact with artifacts (actuators); on the other
hand they have to be enabled to perceive noticeable events
generated by artifacts (sensors). In this view, the integration
approach has been realized at the language level. The set of
artifact-related actions –i.e., use and sense– have been added
to the repertoire of natively available actions. In addition, the
external events coming from artifact have been integrated at
an architectural level by automatically promoting such events
as “relevant” signals to be addressed to the deliberation cycle.

On these basis, two different integration levels are envis-
aged. At a first level, a basic usage of artifacts is targeted by
allowing agents to get access to artifacts and their operations.
In this view, the usage should be facilitated for the developer
in such a way that it naturally fits to existing programming
metaphors and make use of the concepts of the BDI canon.
This is achieved via a general purpose module, which ex-
poses basic operations in a goal-directed fashion. In addition,
the perceptive abilities are encapsuled inside the module and
are based on the propagation of internal events, which in turn
can be signalled outside of the module within the agent’s rea-
soning process.

At a second level, a more domain oriented integration
is envisioned, in order to provide specific support for using
complex artifact types, i.e. requiring to be used in a sequence
of steps. This approach tackles this problem by associating
the interaction logic for specific artifact types into domain
specific, special purpose modules, assumed to scale up the
complexity of artifact observation and usage. For implement-
ing modules as described above, we adopted the notion of
capability [3]. Originally proposed in [6] in the context of
BDI agents, the notion of capability is intended to function-
ally group related resources (i.e. beliefs, goals, plans) and
to exhibit mechanisms to make them available to agents as

(1) joinWorkspace(WName,-Node)
(2) moveToWorkspace(WName,-Node)
(3) quitWorkspace(WName)
(4) use(AName,UICntrlName(Params),?SName,?Timeout,?Filter)
(5) sense(SName,?Filter,?Timeout,+Perception)
(6) focus(AName,?SName,?Filter)
(7) stopFocussing(AName)
(8) observeProperty(AName,?SName,?PFilter,+Property)

Table 1. Basic set of actions to interact with
CARTAGO environments.

reusable components.

3.3. General Purpose Capability
The Jadex- CARTAGO bridge component is realized as a
Jadex capability encapsulating the required functionalities to
operate with artifacts. As a basic building block, the capabil-
ity provides a one-to-one mapping of CARTAGO basic ac-
tions to agent goals and plans conceived to interact. Table 1
provides a synthetic view of the basic actions implemented
by the capability grouped into four main groups. In particu-
lar, the available basic actions make it possible for an agent
to: join, move, and leave workspaces (1-3); use an artifact by
acting on its control interface and perceive generated events
(4-7); observe artifact properties (8). In Table 1 a pseudo-
code first-order logic-like syntax is adopted, while seman-
tics is described informally: ? indicates optional parameters,
while -/+ in/out parameters. Each of the basic CARTAGO
actions is realized in the capability by a self-contained goal
and a related plan. Following the semantics adopted in the
agent-oriented programming approaches considered here, an
action consists in the atomic execution of a statement which
can result in changing the agent’s state and/or interacting with
the agent’s environment, and can succeed or fail. Besides, the
Jadex model allowed the explicit and persistent representa-
tion of relations between agents and environments using spe-
cial types of goals. For instance, the use action is modeled
as an achieve goal, because it may fail due to a timeout (e.g.,
if the artifact is currently in use by another agent); the sense
action is modeled as a query goal, thereby indicating that the
action is used to attain information (from the artifact, in this
case) and succeeds when the information has been obtained.

In addition to the basic actions, some common usage pat-
terns have been identified, that combine typical A&A inter-
actions and can be implemented as a combination of abstract
BDI notions. For instance, instead of the programmer having
to explicitly perform sense operations, the capability can en-
able a continuous ’background-sensing’ and allow program-
ming agent behavior that reacts to changes in focused arti-
facts. There could be at least two models for realizing this: on
the one hand observable events coming from artifacts could
be stored in agent’s belief base. These beliefs would then be
updated automatically (when some relevant artifact property
changes or when a percept is signalled) and could elicit the
agent to enter in the deliberation phase. On the other hand,

177177210

observable events could automatically be posted to the agent
in form of internal events. Using these events as triggers,
the developer can use the events to reactively trigger plans.
An example of this model will be shown later in section Sec-
tion 4.

3.4. Special Purpose Capabilities
Because A&A interactions can be arbitrarily complex, i.e. in
dynamic environments with presence of concurrent agents
and shared artifacts, a developer may need to better focus on
agents in terms of problem solving, thus evaluating the do-
main space at an higher level of abstraction. An alternative
A&A interaction approach may thus suggest to provide ter-
minal goals and related coarse grained plans, allowing agents
to interact with artifacts at an higher level of abstraction, in a
tight goal directed fashion. This approach borrows the hierar-
chical abstraction from cognitive systems and AI, where hier-
archical planning is traditionally used to reduce a composite
activity or a given task to a greater number of independent
sub-activities or tasks placed at a lower level of abstraction.
This eases the usage of artifacts and shifts low level details of
agents/artifact interactions into the mechanisms embedded in
the capability. The special-purpose capability approach can
thus be defined having in mind the problem domain (the goal
to be achieved) and then used to encapsulate fine grained op-
erations which in turn may transparently control the inter-
action from agents to artifacts. Instead of offering only the
basic operations to the user (i.e. initiating a purchasing ac-
tivity making a request for a given book, retrieve the sellers’
proposals and select the best one), also aggregated functions
can thus be included, which can be described at the domain
objective one wants to achieve, e.g. to buy a given book. In
so doing, plans are assumed to possibly handle low level im-
plementation details (i.e. events, exceptions, fails etc.) hence
improving the goal directed approach to artifacts. In addition,
one could develop modules which offer aggregated function-
alities which may be assembled since multiple artifact types,
by including the corresponding rules for their intertwined us-
age. The realization of this integration level is envisaged via
a goal directed approach by which an agent can simply adopt
a goal and wait for its completion.

4. Artifact based Contract-net
This section discusses the usage of artifacts within the
contract-net scenario introduced in Subsection 2.2. The ex-
ample has been chosen in order to compare the approach with
the one described in [2], in which the same scenario was used
and a special ‘Protocol’ capability was introduced to handle
message passing between agents. Whereas the Protocol capa-
bility is aimed at hiding low-level programming details to the
developer, here we place the problem in terms of A&A me-
diated interactions and describe solution sketches using the

Figure 2. Buyer’s goal overview.

generic and special purpose capability approaches4.

4.1. General Purpose Capability
From a buyer viewpoint, the BuyerBoard artifact is service-
able for: (1) initiating the negotiation for a (cfp), and for
propagating an initial signal to buyer agents who may want to
participate; (2) collecting sellers proposals, (3) purchasing a
book, and (4) providing feedback on seller’s reputation. Each
of these options affords the buyer for a given activity, where
each of these activities corresponds to the leafs of buyer’s
goal hierarchy (see Figure 2). In the same way as in [2], the
basic actions to interact have been designed using subgoals,
which are dispatched within agent’s BuyBook plan. Dif-
ferently from [2], the concrete realization of the interaction
between the actors is here external to the agents: noticeably,
some part of the workflow of actions required to attain goals
can be outsourced and delegated to the artifact operations.

As indicated by the general purpose capability description
in Section 3, according to the goal to be adopted some spe-
cific parameters are required. For instance, for initiating a
call for proposal (cfp) using the MakeCfp operation, a buyer
agent may adopt a sub-goal by encoding the following in-
structions:

IGoal initiate = createGoal("use");
initiate.getParameter("AName").setValue("BuyerBoard");
initiate.getParameter("SName").setValue(sensorName);
Op op = new Op("MakeCfp", cfp, cfpinfo, sellers);
initiate.getParameter("op").setValue(op);
dispatchSubgoal(initiate);

Similarly, a final subgoal can be adopted by the buyer once
he intends to provide feedback information by using the
GiveFeedb operation:

IGoal feedback = createGoal("use");
feedback.getParameter("AName").setValue("BuyerBoard");
Op op = new Op("GiveFeedb", sellerName, feedbackValue);
feedback.getParameter("op").setValue(op);
dispatchSubgoal(feedback);

As discussed, the general purpose capability introduces
two main usage approaches for interacting with artifacts.

4The full source code of the example, as well as the CARTAGO/Jadex
integration technology, is available on CARTAGO web site.

178178211

From an operational viewpoint, the utilization of the prim-
itives guarantees agents to fully operate in CARTAGO
workspaces through execution of basic actions. The most
common programming style is thus to directly exploit goals
defined by the capability as basic actions and primitives to
be dispatched from within a plan body. This allows an agent
to directly exploit the provided operation through the artifact
usage interface (see Figure 1).

The second approach exploits artifact events by translating
them in Jadex native internal events. Differently from buyers
who exploit their artifact in a goal directed fashion (with the
purpose to receive a book), sellers can be conceived as reac-
tive agents who: (1) focus on the SellerBoard artifact and
retrieve the various cfps coming from buyers; (2) once a call
arrives, react by making an offer; (3) finally, upon a positive
response coming from the buyer, execute the order by deliver-
ing the book. In this case the realization of the sellers is thus
based upon the use of customized Jadex internal events which
are generated on the fly by the capability on the basis of the
events coming from the focused artifact. Due to a mechanism
defined in the general purpose capability, once the seller has
focused the SellerBoard by adopting a focus goal, he can
automatically translate artifact events to proper Jadex internal
events.

IGoal focus = createGoal("focus");
focus.getParameter("AName").setValue(aName);
dispatchSubgoalAndWait(focus);

Notice that, in order to initiate the automatic generation of
internal events, the focus goal is dispatched without provid-
ing a sensorName parameter. Without having a sensor to
store percepts, these events are posted in the reasoning pro-
cess. Then, by carrying additional relevant information (i.e.,
the event name, type), they allow agents to simply react trig-
gering the execution of specific plans. The following cutout
shows the ADF descriptor used by the seller agent to au-
tonomously retrieve cfp from SellerBoard artifact:

<plan name="incomingcfp">
<body>new MakeProposalAction()</body>
<trigger>
<internalevent ref="artifactevent"><match>

$event.label.equals("proposalfor"+getAgentName())
</match></internalevent>
</trigger>

</plan>

A new MakeProposalAction is triggered once an inter-
nal event matching a specified label is retrieved. Inside the
MakeProposalAction, the goal directed approach can
be used by the seller to interact with the board.

4.2. Special Purpose Capabilities
To further hide the single steps of the contract-net a special
Contract-Net capability can be devised. At an interface level,
such a capability provide the same resources as the one de-
scribed in [2]. But, even if the goal directed approach to inter-
act with artifacts remains the same, here the implementation

of envisions a further layer by embedding all the mechanisms
to interact with the artifact in a domain dependent module.
Using artifacts instead of messages a buyer has just to cre-
ate and dispatch the terminal goal cfp_BuyBook, providing
the information about the participants, the concrete cfp and
possibly a policy for evaluating the received proposals.

Exploiting special purpose capabilities to interact with ar-
tifacts is useful in attaining a twofold outcome. Firstly, it pro-
motes a deep separation of concerns: the cost of arranging
complex activities in subactivities or subtasks is be smaller
once the developer can refer to the terminal goals placed by
the problem domain. Secondly, this enables a customizable
way to make agent’s practical behavior easily adaptive to sit-
uated conditions, also improving promptness to proactively
react to particular events which can be related to a particular
context (i.e. action fails, unexpected changes etc.).

4.3. Discussion
Both message and artifact based approaches aim at disbur-
den the agent developer from the tedious details of message
passing. Accordingly, they provide a simple, goal-based in-
terface for contract-net negotiations. Nevertheless the under-
lying model of the approach in [2] is still based on explicit
speech-acts between a buyer agent and a set of seller agents.
Therefore, the buyer needs to know potential sellers before
starting the interaction (e.g. by doing a lookup in a yellow
page service) and share the same protocol ontology. On the
contrary, artifact based system allows to devise out a facility
ruling and enabling the interaction between the agents. This,
for instance, allows to abstract away from the pre-negotiation
phases. The matchmaking between buyers and potential sell-
ers can be moved from the agents into the artifacts logics
(precomputation). One advantage of this is that different
matchmaking strategies can be implemented in the environ-
ment without changing the code of the agents. A potential
drawback is that the buyer agent has to abandon the control
over the matchmaking process. In this view, artifacts assume
a pivotal role in the context of open systems. They can be
deployed in different nodes, thus realizing a distributed and
reliable system spread over different working environments.

Moreover, this allows agents –independently from their
platform– to coordinate activities by minimizing protocol
handling, even more to cooperatively update and suitably
retrieve information which is relevant for their tasks (i.e.
seller’s reputation, in this case). Besides, artifacts allow this
information to persist in the overall system even beyond the
presence of interacting agents. Once an agent uses an ar-
tifact he is both relying on its functionalities and delegat-
ing/externalizing part of his activities. In the contract-net
example, SellerBoard at each round can sort the offers
made by sellers –possibly following some policy specified
by the buyer– thus freeing from the load to synchronize and
sort proposals. From a cognitive perspective, this promotes
the use of artifacts as suitable entities that agents may exploit

179179212

to improve the repertoire of actions, thus intentionally exter-
nalizing some of their activities on external resources with
the aim to to ease computational burden [7].

5. Related Work and Conclusion
The role of the environment as first-class abstraction in MAS
and the importance of mediated interaction has been largely
acknowledged in multi-agent system literature (see [20] for
a survey). However, to authors’ knowledge, few works con-
sider the issue of integration of cognitive agents in properly
designed environment and in particular goal-directed use of
environment. Among the notable exceptions, we mention
here Brahms [18], a multi-agent platform to develop and sim-
ulate multi-agent models of human and machine behavior,
based on a theory of work practices and situated cognition.
Another approach has been developed by Holvoet and Val-
ckenaers [9], who introduced Delegate MAS as a mean to
design environments in BDI-based agent architectures. Del-
egate MASs consist of light-weight agents, which are issued
either by resources for building and maintaining information
on the environment, or by task agents exploring the options
on behalf of the agents in order to coordinate their inten-
tions. GOLEM [5] introduced a platform for modeling sit-
uated cognitive agents in distributed environments by declar-
atively describing the representation of the environment in
a logic-based form. Physical environments are modeled in
terms of containers where agents based on the KGP model
and objects are situated.

To conclude, in this paper we focussed the issue of goal-
orientation in environment-mediated interaction, taking as
a reference context artifact-based environments and BDI
agents, with artifacts exploited by goal-directed agents us-
ing beliefs, plans and goals. As a concrete outcome, the in-
tegration of CARTAGO infrastructure and Jadex agent plat-
form has been proposed and two different abstraction levels
for goal-directed use of artifacts by Jadex agents have been
identified: a first one that tackles a direct mapping of artifact
operations to BDI goals, and a second one that is intended
to provide a more abstract view on artifacts by focussing on
the domain function they provide. With respect of our previ-
ous work [14], here we focussed on goal-directed interaction,
tightly combining artifact functioning with agent perceptive
and reasoning processes. Whereas [14] provides a suitable
framowork allowing developers to build CARTAGO based
environments where agents holding to different platforms are
enabled to interact, we here mainly focus on the cognitive
terms underlying those interactions and on the functional ef-
fects that such interaction may introduce in the overall system
dynamics.

References
[1] M. Bratman. Intention, Plans, and Practical Reason. Harvard

University Press, 1987.

[2] L. Braubach and A. Pokahr. Goal-oriented interaction proto-
cols. In MATES’07, Proceedings. Springer, 2007.

[3] L. Braubach, A. Pokahr, and W. Lamersdorf. Extending the
Capability Concept for Flexible BDI Agent Modularization.
In ProMAS’05,Proceedings, 2006.

[4] L. Braubach, A. Pokahr, W. Lamersdorf, and D. Moldt. Goal
Representation for BDI Agent Systems. In ProMAS’04, Pro-
ceedings, 2004.

[5] S. Bromuri and K. Stathis. Situating Cognitive Agents in
GOLEM. In Engineering Environment-Mediated Multiagent
Systems (EEMMAS’07), 2007.

[6] P. Busetta, N. Howden, R. Rönnquist, and A. Hodgson. Struc-
turing BDI agents in functional clusters. In Agent Theories,
Architectures and Languages (ATAL-00), 2000.

[7] A. Clark and D. Chalmers. The extended mind. Analysis, 58:
1:7–19, 1998.

[8] document no. FIPA0029. FIPA Contract Net Interaction Pro-
tocol Specification, chapter Foundation for Intelligent Physi-
cal Agents (FIPA). 2002.

[9] T. Holvoet and P. Valckenaers. Beliefs, desires and intentions
through the environment. In AAMAS’06, Proceedings, pages
1052–1054, New York, NY, USA, 2006. ACM.

[10] B. A. Nardi. Context and Consciousness: Activity Theory and
Human-Computer Interaction. MIT Press, 1996.

[11] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A
meta-model for multi-agent systems. Autonomous Agents and
Multi-Agent Systems, 17 (3), 2008.

[12] M. Piunti and A. Ricci. Cognitive Artifacts for Intelligent
Agents in MAS: Exploiting Relevant Information residing in
Environments. In Knowledge Representation for Agents and
Multi-Agent Systems (KRAMAS-08), 2008.

[13] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A
BDI Reasoning Engine, chapter Multi-Agent Programming.
Kluwer Book, 2005.

[14] A. Ricci, M. Piunti, L. D. Acay, R. Bordini, J. Hubner,
and M. Dastani. Integrating Artifact-Based Environments
with Heterogeneous Agent-Programming Platforms. In AA-
MAS’08, Proceedings, 2008.

[15] A. Ricci, M. Viroli, and A. Omicini. The A&A program-
ming model & technology for developing agent environments
in MAS. In ProMAS’07,Post-proceedings, volume 4908 of
LNAI, pages 91–109. Springer, 2007.

[16] A. Ricci, M. Viroli, and A. Omicini. CArtAgO: A framework
for prototyping artifact-based environments in MAS. In En-
vironments for MultiAgent Systems III, volume 4389 of LNAI,
pages 67–86. Springer, May 2007.

[17] M. B. V. Riemsdijk, M. Dastani, and M. Winikoff. Goals in
agent systems: A unifying framework. In AAMAS’08, Pro-
ceedings, 2008.

[18] M. Sierhuis and W. J. Clancey. Modeling and simulating work
practice: A human-centered method for work systems design.
IEEE Intelligent Systems, 17(5), 2002.

[19] D. Weyns, A. Omicini, and J. Odell. Environment as a First-
class Abstraction in MAS. In Autonomous Agents and Multi-
Agent Systems [20], pages 5–30.

[20] D. Weyns and H. V. D. Parunak. Special issue on envi-
ronments for multi-agent systems. Autonomous Agents and
Multi-Agent Systems, 14(1):1–116, Feb. 2007.

[21] M. Wooldridge. Reasoning about Rational Agents. MIT
Press, 2000.

180180213

