

Servicekomposition mit eFlow

Savas Cetin

Inhalt

- Einführung und Motivation
- Überblick über eFlow
 - Composite E-Services
 - Nodes
 - Engine
- Adaptive Service-Prozesse
 - Dynamic Service Discovery
 - Multiservice Nodes
 - Generic Service Nodes
- Modifikationen
 - Ad-hoc
 - Bulk

Einführung und Motivation

- Über das Internet angebotene E-Services müssen mit einer sich ständig verändernden, also stark dynamischen Geschäftsumwelt fertig werden
- Durch ständige Weiterentwicklung der Technologie und dadurch, dass viele Geräte internetfähig werden, wächst die Zahl und Art der Services bzw. Dienste und Anbieter täglich
- Der Wettbewerb wächst und die Anbieter sind gezwungen kundenspezifische Services anzubieten um wettbewerbsfähig zu bleiben
- Diese Entwicklung stellt hohe Anforderungen an ein System, welches die Entwicklung und Zustellung von "composite e-services" ("zusammengefaßte Dienste") unterstützen soll.

Einführung und Motivation (2)

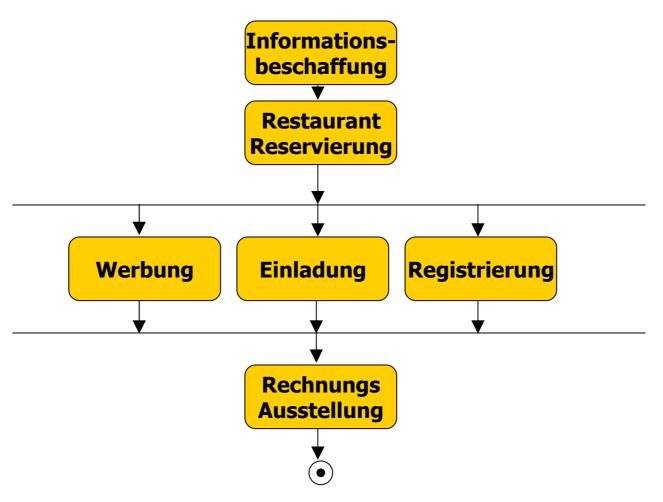
- eFlow ist eine *Plattform* um composite e-services zu spezifizieren, in Gang zu setzen und zu überwachen
- Composite e-services sind *Prozesse* die andere composite oder Basis-Services zu einem <u>Service zusammenfügen</u>
- Bietet Vielzahl von <u>Funktionen</u>, welche die Service-Prozess-Spezifikation und das Service-Prozess Management unterstützen
- Besitzt m\u00e4chtige, trotzdem einfache "service composition language"
- Event und Exception-Handling
- ACID Service- Level Transaktionen
- Security-Management
- Überwachungsfunktionen

Einführung und Motivation (3)

- Über das Internet angebotene E-Services müssen also mit einer sich ständig verändernden Geschäftsumwelt fertig werden
- Natürlich ist es nicht möglich den Prozess kontinuierlich den Änderungen der Marktbedingungen anzupassen
 - =>Änderungen würden zu häufig auftreten
 - =>Prozessänderung ist zeitaufwendige Angelegenheit
- Es sollte aber möglich sein Prozessänderungen mit minimalsten Benutzereingriff oder mit keinem Eingriff durchzuführen

Einführung und Motivation (4)

- Es sollte auch möglich sein Prozess-Definitionen oder Änderungen auf einfache und effektive Art durchzuführen, wo Benutzereingriff erforderlich
- Bildung von Konsistenzregeln
- Bildung von Autorisationsregeln


Composite E-Services

- "Composite e-services" sind Prozesse die andere composite oder Basis-Services zu einem Service zusammenfügen
- Composite services werden als Geschäftsprozesse modelliert und durch ein Prozessschema beschrieben
- Sie werden vom "Service-Process-Engine" ausgeführt
- Ein Service wird durch einen Graphen dargestellt, welche die Ausführungsordnung zwischen den einzelnen Nodes angibt.

Nodes

- Service Nodes: stellen den Aufruf eines Basis/Composite-Services dar
- Decision Nodes: spezifizieren die Alternativen und Regeln, welche den Ausführungsfluss kontrollieren
- Event Nodes: ermöglichen es den Service-Prozessen verschiedene Eventtypen zu senden und zu empfangen

Prozess-Instanz-Schema

Service-Node-Spezifikation

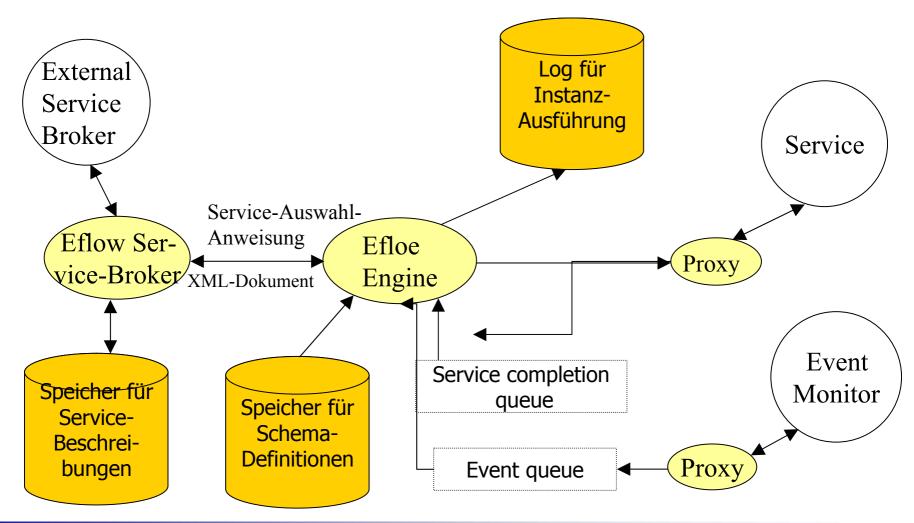
- Die Service-Node-Spezifikation beinhaltet
 - welche Daten der Service Node zu lesen und ändern berechtigt ist,
 - die Beschreibung des Services, der aufgerufen werden soll
 - Die vom Kunden gestellten Anforderungen,
 - Einen letzten Ausführungstermin, im Falle eines Verzugs

Engine

- Prozessinstanzen werden vom Engine in Kraft gesetzt
- Der Engine kontrolliert den Zugang zu den Fall-Packet-Daten
- Seine Hauptaufgabe ist es Nachrichten zu bearbeiten
 - Nachricht über Zustand des Services
 - Mitteilungen eingetretener Events

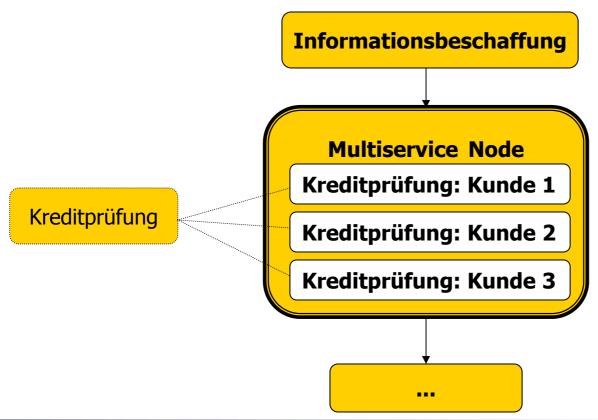
Anpassungsfähige Service Prozesse

- Um mit den ständigen Veränderungen zurecht zu kommen und um daraus einen Vorteil zu ziehen, müssen Service-Prozesse anpassungsfähig ("adaptive") sein,
- d.h. Änderungen unter minimalsten Eingriff der Benutzer oder durch keinen Eingriff von außen durchzuführen.
- eFlow bietet verschiedene Funktionen an:
 - Dynamic Service Discovery
 - Multiservice Nodes
 - Generic Nodes


Dynamic Service Discovery

- Um mit den Charakteristiken der Internetumgebung klarzukommen bietet eFlow eine offene und dynamische Vorgehensweise für die Service-Auswahl
- Statische Service-Bindung ist oft zu starr, ermöglicht nicht:
 - Auswählen des passenden Services abhängig von Kundenwünschen
 - Dynamische Entdeckung der verfügbaren Services, welche am besten die Wünsche eines spezifischen Kunden erfüllen

Dynamic Service Discovery (2)


- Ist ein Service-Node gestartet, ruft der engine eine Service-Broker, einen Vermittler auf
- Benutzer können aber einen eigenen Vermittler auswählen: Plugged-in Broker
- Dieser führt die spezifische Regel aus und liefert den entsprechenden Service zurück
- Diese Service-Auswahl-Anweisung sind in einer Broker-spezifischen Sprache definiert, z.B. XQL für espeak
- eFlow fordert nur, dass die Regel ein XML-Dokument zurück liefert

Dynamic Service Discovery (3)

Multiservice Nodes

Knoten zur **mehrfachen**, **parallelen** Aktivierung **des selben** e-Services.

Multiservice Nodes (2)

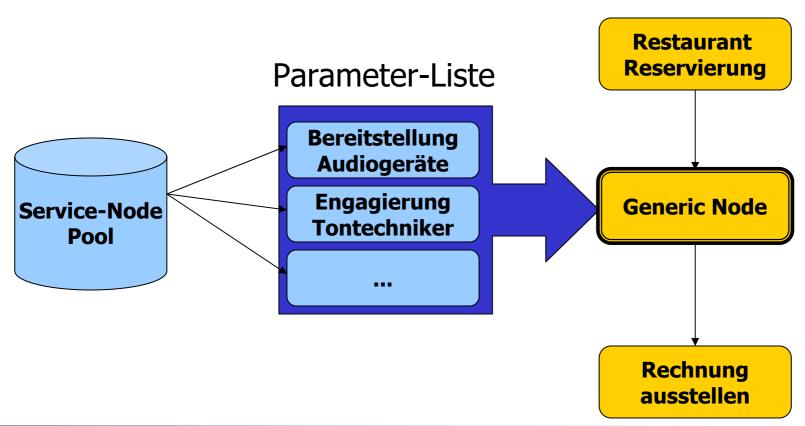
- Bestimmungs-Faktoren (zur Laufzeit) für die Anzahl der zu aktivierenden Instanzen hängt ab:
 - Anzahl der Service-Anbieter
 - Inputparameter
- Terminierungs-Bedingung:
 - Abschluss aller Services
 - Erhalten eines bestimmten Ergebnisses

Multiservice Nodes (3)

Spezifikation eines Multiservice-Nodes

. . .

<TERMINATION> rejections.length > 0 </TERMINATION>


<MULTISERVICE_NODE>

Generic Service Nodes

- Knoten zur Aktivierung mehrerer, unterschiedlicher e-Services.
- Flexible Gestaltung der e-Services zur Befriedigung individueller Kundenwünsche

Generic Service Nodes (2)

Generic Service Nodes (3)

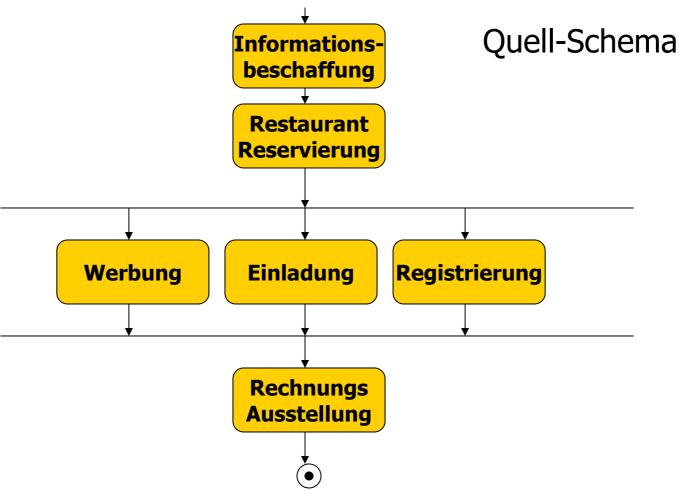
- Enthält einen Parameter für die Services
 - Parameter ist vom Typ ListOf (Service_Node)
- Ausführungsweise wird im Attribut executionMode festgelegt:
 - sequential (Schleife)
 - parallel

Generic Service Nodes (4)

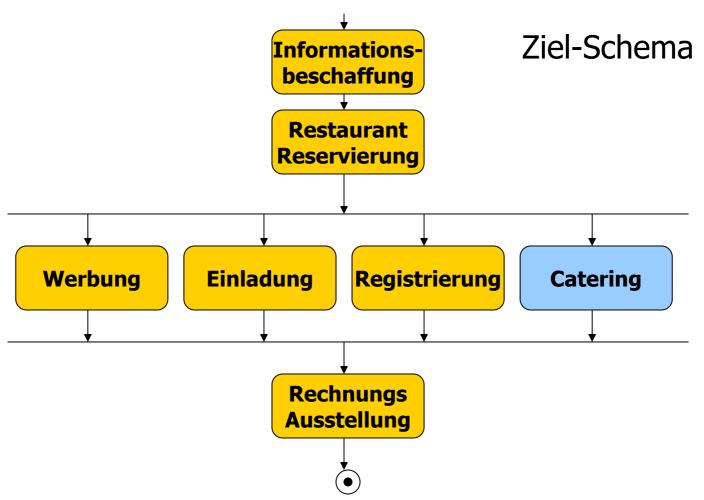
Spezifikation eines Generic Service Nodes

```
<GENERIC NODE id="award ceremony services>
      <NAME> Award Ceremony Service </NAME>
      <SERVICE NODE POOL> Ceremony Service Pool
      </service node pool>
      <DESCRIPTION> Platzhalter für Service-Knoten, die
                    sich auf einen Ceremony-Service
                    beziehen und parallel ausgeführt
                    werden
      </DESCRIPTION>
      <SERVICE SELECTION VAR> SelectedServices
      </service selection var>
      <EXECUTION MODE mode="parallel" />
</GENERIC NODE>
```

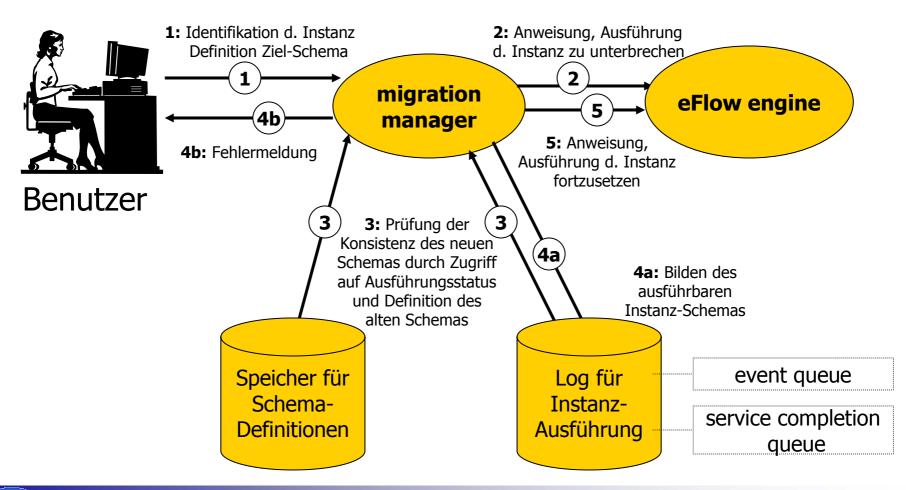
Modifikationen Service Prozess


- Ursachen
 - neue Gesetzeslage oder Geschäftsstrategie
 - Prozessoptimierung
 - Fehlerkorrektur
 - Mangelhaftigkeit der aktuellen Definition
- Modifikationsarten:
 - Ad-hoc Modifikation
 - Bulk-Modifikation

Ad-hoc-Modifikation


 Modifikation einer einzelnen, laufenden Prozess-Instanz

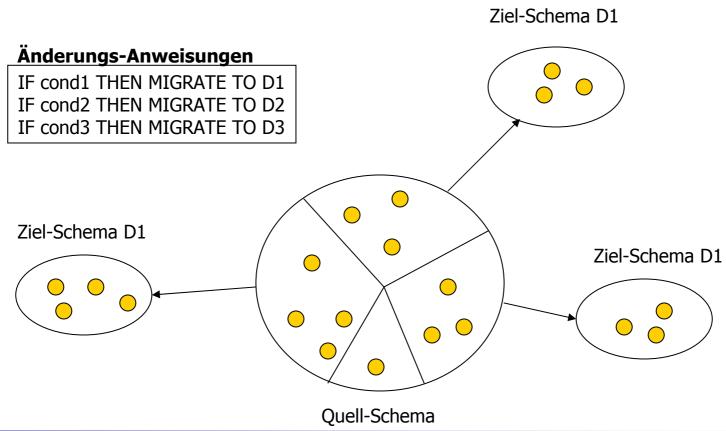
- Zwei Arten:
 - Änderung des Prozess-Instanz-Schemas
 - Änderung des Prozess-Instanz-Status


Ad-hoc-Modifikation (2) Prozess-Instanz-Schema

Ad-hoc-Modifikation (3) Prozess-Instanz-Schema

Ad-hoc-Modifikation (4) Vorgehen

Ad-hoc-Modifikation (5) Konsistenz-Regeln


- Gerade aktive Knoten müssen im Ziel-Schema enthalten sein
- Variable, die im Quell- und Zielschema enthalten sind, müssen vom gleichen Typ sein, damit die Werte nach einer Migration erhalten bleiben

Bulk-Modifikation

- Modifikation mehrerer, laufender
 Prozess-Instanzen des selben Prozesses mit gleichen Eigenschaften
- Beispiel: Änderungs-Anweisung

IF (guests > 100) THEN MIGRATE TO "Security_Ceremony_Service"

Bulk-Modifikation (2) Beispiel

Bulk-Modifikation (3) Vorgehen

- Definition, Compilierung und Überprüfung der Überführungs-Vorschrift
- Unterbrechung aller laufender Instanzen des Prozesses
- Prüfung der Erfüllung der Bedingung der Änderungs-Anweisung
- Prüfung der Konsistenz-Regeln und der Autorisierung
- 5. Durchführung der Änderung
- 6. Fortsetzen der Ausführung

Sicherheits-Regeln

- Berechtigungen in Abhängigkeit vom Ausführungs-Status
- Berechtigungen:
 - Authorized_State_Modifiers
 - Authorized_Node_Modificators
 - Authorized_Flow_Modificators
 - Authorized_Initiators

Implementierung

 Prototyp von HP (F. Casati, M. Shan) basierend auf e-speak und Process Manager

http://www.research.microsoft.com/research/db/debull/A01mar/issue.htm

 Ansatz der Universität Saarland (G. Shegalov, M. Gillmann, G. Weikum) Javabasiert und XML-basiert

http://www-dbs.cs.uni-sb.de/~gillmann/Publications/XML-TES.pdf

Literatur

- F. Casati, S Ilnicki, L. Jin, V. Krishnamoorthy, M. Shan, Adaptive and Dynamic Service Composition in eFlow, Technical Report HPL-2000-39, HP Software Technology Laboratory, März 2000: http://www.hpl.hp.com/techreports/2000/HPL-2000-39.pdf
- F. Casati, S Ilnicki, L Jin, V. Krishnamoorthy, M Shan, eFlow: a Platform for Developing and Managing Composite e-Services, Technical Report HPL-2000-36, HP Software Technology Laboratory, März 2000: http://www.hpl.hp.com/techreports/2000/HPL-2000-36.pdf
- F.Casati, M. Shan, Definition, Execution, Analysis, and Optimization of Composite E-Services, HP Laboratories, 2001: http://www.research.microsoft.com/research/db/debull/A01mar/issue.htm