
Implementing Push technology with
J2ME and MIDP

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Before you start... 2
2. Download and install the software................................... 3
3. MIDlet activation.. 5
4. Registration ... 6
5. Example: Incoming network connection, Part 1................... 9
6. Example: Incoming network connection, Part 2................... 20
7. Reviewing the code .. 26
8. Summary and resources .. 29

Implementing Push technology with J2ME and MIDP Page 1 of 30

Section 1. Before you start

About this tutorial

With the Mobile Information Device Profile (MIDP) version 1.0, the Application Manager
System (AMS) was the only means to start a MIDlet. Although the AMS is still ultimately
responsible for installing, managing, starting, and stopping MIDlets, MIDP 2.0 applications can
now be started based on a request from a remote connection or scheduled timer.

This new feature brings with it a wealth of potential applications. For example, a remote
application can push stock quote information on an hourly basis to a mobile device. Or how
about this -- notifications from the corporate office can be sent to road warriors to alert them of
schedule changes. Using the alarm feature, a MIDlet can now offer up reminders of scheduled
events, such as a reminder of a meeting an hour before it begins.

This tutorial will walk through the basics of using Push technology with MIDP 2.0, including
development of a MIDlet that will be activated based on an incoming SMS message (Simple
Message Service).

About the author
John Muchow is a freelance technical writer and recruiter. He is the author of Core J2ME
Technology and MIDP, a best-selling J2ME book that has been translated into Chinese,
Korean and Italian. Visit Core J2ME (see Resources) for additional source code, articles, and
developer resources. For additional information about writing projects or technical recruiting,
you can contact John at john@corej2me.com.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 30 Implementing Push technology with J2ME and MIDP

mailto:John@CoreJ2ME.com
mailto:John@CoreJ2ME.com
http://www.amazon.com/exec/obidos/ASIN/0130669113/corej2me-20
http://www.amazon.com/exec/obidos/ASIN/0130669113/corej2me-20
http://www.amazon.com/exec/obidos/ASIN/0130669113/corej2me-20
http://www.amazon.com/exec/obidos/ASIN/0130669113/corej2me-20
http://www.amazon.com/exec/obidos/ASIN/0130669113/corej2me-20
#resources
mailto:john@corej2me.com

Section 2. Download and install the software

Required components
You'll need two different software tools before you can go any further:

• The Java Development Kit (JDK)

• The Wireless Toolkit (WTK)

Each of these tools is discussed in the next panels

Download the Java Development Kit
The JDK provides the Java source code compiler and a utility to create Java Archive (JAR)
files. When working with version 2.0 of the Wireless Toolkit (as we are here), you will need to
download JDK version 1.4 or greater.

Download JDK version 1.4.1.

Download the Wireless Toolkit
The Sun Microsystems Wireless Toolkit is an integrated development environment (IDE) for
creating Java 2 Platform, Micro Edition (J2ME) applications, commonly referred to as MIDlets.

The WTK download contains an IDE, as well as the libraries required for creating MIDlets.

Download J2ME Wireless Toolkit 2.0.

This tutorial builds on an earlier developerWorks tutorial -- an excellent starting point if you are
new to the Wireless Toolkit.

MIDlet development with the Wireless Toolkit.

Install the software
The Java Development Kit (JDK)
Use the JDK documentation to install the JDK. You can choose either the default directory or
specify another directory. If you choose to specify a directory, make a note of where you install
the JDK. During the installation process for the Wireless Toolkit, the software attempts to
locate the Java Virtual Machine (JVM); if it cannot locate the JVM, you are prompted for the
JDK installation path.

The Wireless Toolkit (WTK)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Implementing Push technology with J2ME and MIDP Page 3 of 30

http://java.sun.com/products/jdk/1.4.1
http://java.sun.com/products/jdk/1.4.1
http://java.sun.com/products/jdk/1.4.1
http://java.sun.com/products/jdk/1.4.1
http://java.sun.com/products/j2mewtoolkit
http://java.sun.com/products/j2mewtoolkit
http://java.sun.com/products/j2mewtoolkit
http://java.sun.com/products/j2mewtoolkit
http://java.sun.com/products/j2mewtoolkit
http://www-106.ibm.com/developerworks/edu/wi-dw-wikit-i.html
http://www-106.ibm.com/developerworks/edu/wi-dw-wikit-i.html
http://www-106.ibm.com/developerworks/edu/wi-dw-wikit-i.html
http://www-106.ibm.com/developerworks/edu/wi-dw-wikit-i.html
http://www-106.ibm.com/developerworks/edu/wi-dw-wikit-i.html
http://www-106.ibm.com/developerworks/edu/wi-dw-wikit-i.html

The Wireless Toolkit is contained within a single executable file, which you downloaded in the
previous panel. Run this file to begin the installation process. It is recommended that you use
the default installation directory. However, if you do not use the default directory, make sure
the path you select does not include any spaces.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 30 Implementing Push technology with J2ME and MIDP

Section 3. MIDlet activation

Three ways to start a MIDlet
Once installed on a mobile device, a MIDlet can be activated in one of three ways:

• User request

• Incoming network connection

• Scheduled alarm

Let's quickly review network- and alarm-based activation.

Incoming network connection
The Application Manager System (AMS) can monitor port activity looking for a specific
connection type and port. With the additional network connectivity options in MIDP 2.0, an
incoming network request can be any of the following types:

• Message-based, such as SMS

• Packet-based, such as datagram

• Stream-based, such as socket

Scheduled alarm
In addition to an incoming network connection, a MIDlet can be activated at a specific time.
This can be very useful for repeating events such as reminders for meetings or other
appointments.

An alarm time is specified using a long integer, with the same format as the Date.getTime()
method. The integer represents the number of milliseconds since January 1st, 1970.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Implementing Push technology with J2ME and MIDP Page 5 of 30

Section 4. Registration

Types of registration
In order for a MIDlet to be notified of an incoming network connection or to "wake up" at a
scheduled time, it must register these requests with the AMS. The AMS manages a list of
acceptable incoming network connections and time-based alarms in what is referred to as the
push registry. Requests are registered in one of two ways:

• Dynamically, at run time

• Statically, through entries in the Java Application Descriptor (JAD) file

Dynamic registration
Dynamic registration occurs when a MIDlet notifies the AMS at run time of its intent to allow
incoming network connections or to be activated sometime in the future through an alarm.

Call the registerConnection() method in the PushRegistry class to register network
connections,:

registerConnection(String connection, String midlet, String filter)

For alarm registration, prior to exiting the MIDlet, call the registerAlarm() method in the
PushRegistry class:

registerAlarm(String midlet, long time)

Dynamic registration for incoming network connection
Below is a sample call to the registerConnection(String connection, String
midlet, String filter) method.

PushRegistry.registerConnection("datagram://:2000", this.getClass().getName(), "*");

As with static registration, the connection URL is given the name of the MIDlet to invoke and
any filter to be applied to the sender. Notice how I specify the current (active) MIDlet using the
getClass().getName() method.

Dynamic registration for alarm

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 30 Implementing Push technology with J2ME and MIDP

Below is a sample call to the registerAlarm(String midlet, long time) method.

Date now = new Date();
PushRegistry.registerAlarm(this.getClass().getName(), now.getTime + (1000 * 60 * 60));

This requests that the AMS activate this MIDlet one hour from the current time. Remember, the
'time' parameter is specified in milliseconds -- 3,600,000 milliseconds equals one hour.

Note: Only one alarm per MIDlet can be registered at any time.

Static registration
Incoming network requests can be defined in the JAD file. This type of request is considered
static in that the sender and connection type are known when the MIDlet is installed. A static
registration is defined using the MIDlet-Push-<n> attribute.

MIDlet-Push-<n>: <ConnectionURL>, <MIDletClassName>, <AllowedSender>

where:

• ConnectionURL is the connection string specifying the URL to monitor for incoming
connection.

• MIDletClassName is the MIDlet class name to invoke.

• AllowedSender is the filter to specify what senders are allowed to request an incoming
connection.

Examples of static registration
Examples of the MIDlet-Push-<n>: <ConnectionURL>, <MIDletClassName>,
<AllowedSender> are:

MIDlet-Push-1: sms://:1000, PushDemo, *

MIDlet-Push-2: socket://:100, corej2me.NewsLink, *

When setting the AllowedSender parameter as an asterisk (*), the AMS accepts requests
from any sender over the specified port. The specifics of each parameter will be shown as the
tutorial progresses.

Note: Alarm-based activation is not supported through static registration.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Implementing Push technology with J2ME and MIDP Page 7 of 30

Removing registration
Whenever a MIDlet suite is uninstalled, the AMS removes any static registrations. Should you
need to remove a dynamic registration, call the
PushRegistry.unregisterConnection() method specifying the URL to remove:

Example:

PushRegistry.unregisterConnection("datagram://:2000")

Note: Static registration entries can only be changed by uninstalling a MIDlet, making the
changes to the JAD file, and re-installing the MIDlet. Because dynamic registration is
performed at run time, changes can be made at any time.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 30 Implementing Push technology with J2ME and MIDP

Section 5. Example: Incoming network connection, Part 1

Overview
The following example walks you through creating, packaging, downloading, and testing a
MIDlet that is activated by an incoming SMS message.

This MIDlet relies on static push registration. If you recall, this means an entry specifying the
incoming network parameter must be added in the JAD file. Also, you will step through using
WTK to simulate sending an SMS message to an emulated device.

The following example shows how an incoming message will look on the emulator when the
application is complete.

Figure 1. SMS message

Creating the project
To create the project:

1. Start the wireless toolkit.

2. Select New Project.
3. Enter the values shown in Figure 2.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Implementing Push technology with J2ME and MIDP Page 9 of 30

4. Click Create Project.
5. Click OK when the settings dialog box is displayed.

Writing the code

Simulating Over-the-Air (OTA)
As mentioned previously, J2ME-enabled devices are equipped with an Application Manager
System (AMS) to assist in downloading, installing, and configuring J2ME applications. The
WTK can simulate this process, which I will step through next.

Packaging the MIDlet
Before going any further, you need to package the MIDlet into a JAR file and create the
associated JAD file. The steps to do this are:

1. Create the push registry entry.

2. Build the MIDlet.

3. Create the JAR and JAD files.

Create the push registry entry
This MIDlet uses static registration. Here is how to specify the attributes inside the JAD file:

1. Select Settings on the WTK application.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 30 Implementing Push technology with J2ME and MIDP

2. Select the Push Registry tab.

3. Click Add.

4. Enter the information shown in Figure 3 and select OK.

Figure 3. Push Registry

Where:

• The Connection URL refers to the port that is monitored for an incoming network connection.

• The Class refers to the MIDlet that will be invoked when a message arrives.

• With the Allowed Sender set to '*', the AMS does not perform any filtering on the incoming
request (that is, any sender is allowed).

Build the MIDlet
To compile and preverify the MIDlet, select Build from the WTK toolbar.

Figure 4. Build MIDlet

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Implementing Push technology with J2ME and MIDP Page 11 of 30

Create the JAR and JAD files
To package the MIDlet, select Project>Package>Create Package from the WTK toolbar.

Figure 5. Package

WTK pulls together all the information necessary to create both the JAR and JAD files. If you
have ever created a JAR or JAD file the old-fashioned way, editing the files yourself, you'll truly
appreciate the ease and accuracy with which WTK creates these files. You no longer need to
concern yourself that the JAR file size specified in the JAD file entry MIDlet-Jar-Size matches
the actual file size as created by the pre-verifier, as this is managed by WTK.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 30 Implementing Push technology with J2ME and MIDP

Reviewing the JAD file
Take a moment to view the settings within the JAD file. Work your way down the file hierarchy
to the x:\WTK20\apps\PushDemo\bin directory. Here you'll find both the JAR and JAD files.

Figure 6. Review JAD file

Looking inside the JAD file, you can see the push registry entry previously created.

MIDlet-1: PushDemo, , PushDemo
MIDlet-2: PushDemoAlarm, , PushDemoAlarm
MIDlet-Jar-Size: 3528
MIDlet-Jar-URL: PushDemo.jar
MIDlet-Name: PushDemo
MIDlet-Push-1: sms://:1000, PushDemo, *
MIDlet-Vendor: Sun Microsystems
MIDlet-Version: 1.0
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-2.0

At this point you have all that you need to move to the next step: testing an incoming
connection.

Installing the MIDlet via OTA, Step 1
At this point in the "real world," the packaged files (JAR and JAD) would be placed on a remote
machine. A J2ME-enabled device would use a built-in browser to access the URL where the
files are located, and could select, download, and install the MIDlet. With WTK, you can

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Implementing Push technology with J2ME and MIDP Page 13 of 30

simulate this process.

Begin by selecting Run via OTA from the WTK Project menu. After the AMS starts, click
Apps. Click Menu and select Launch to start the install application.

Figure 7. AMS Step 1

Installing the MIDlet via OTA, Step 2
The install application will present a URL, simulating access to a server that is hosting J2ME
MIDlets. Select Menu, and select Go. This initiates a connection to the URL (simulating this
action) and downloads a list of available MIDlets.

Figure 8. AMS Step 2

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 30 Implementing Push technology with J2ME and MIDP

Installing the MIDlet via OTA, Step 3
The only MIDlet available will be the push example. Select Install to begin. The AMS always
begins by downloading only the JAD file. This gives the AMS the opportunity to check software
version information, available memory, and other configuration details. If for some reason the
AMS cannot load the MIDlet, this is where you would be notified, and the installation process
would end.

Click Install to begin downloading the JAR file.

Figure 9. AMS Step 3

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Implementing Push technology with J2ME and MIDP Page 15 of 30

Installing the MIDlet via OTA, Step 4
Once the download begins, even though you are simulating the OTA process, you are
prompted with two dialog boxes requesting permission to start the MIDlet based on incoming
requests (our push functionality) and whether you are willing to accept charges for airtime
when receiving incoming network data. Select Yes, always. Don't ask again for both
scenarios.

Figure 10. AMS Step 4

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 30 Implementing Push technology with J2ME and MIDP

Installing the MIDlet via OTA, Step 5
With the download complete, you are returned to the AMS applications menu. Select Back to
return to the AMS start screen.

At this point, the device (emulator) is in an idle state. If this were an actual mobile device, it
would be analogous to 'main' display where no applications are active. This is important to test
the functionality of the MIDlet. You want to know that the MIDlet is not running, and will be
started based on an incoming network request.

Figure 11. AMS Step 5

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Implementing Push technology with J2ME and MIDP Page 17 of 30

Installing the MIDlet via OTA, Step 6
One final note before moving on. You need to make note of the phone number of this device
so you know where to send the SMS message. In Figure 12, notice the phone number in the
upper left corner -- in this example the number is +5550001. Jot down the value displayed on
your device.

Figure 12. AMS Step 6

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 30 Implementing Push technology with J2ME and MIDP

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Implementing Push technology with J2ME and MIDP Page 19 of 30

Section 6. Example: Incoming network connection, Part 2

Open messaging console
With the MIDlet packaged, downloaded and installed, you are now ready to send an SMS
message to activate the MIDlet. WTK provides the ability to simulate sending SMS messages.
To open the console from which you can send a message, select Utilities from within the File
menu.

Figure 13. File Utilities

Once the Utilities dialog box appears, select Open Console under WMA (Wireless Messaging
API).

Figure 14. WMA Console

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 30 Implementing Push technology with J2ME and MIDP

Entering the SMS message
Once the console appears, select Send SMS message.

Figure 15. WMA 1

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Implementing Push technology with J2ME and MIDP Page 21 of 30

It is important to select the phone number of the client that matches the phone number of your
emulator. If your device phone number does not appear in the list, click Add Unlisted Client to
add the number. Also, the port number must be set to 1000, which is the value defined
previously in the push registry. With everything now in place, type a message and press Send.

Figure 16. WMA 2

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 30 Implementing Push technology with J2ME and MIDP

Approve incoming data request
Once the emulator recognizes there is an incoming connection request, it prompts you again
for permission to accept incoming messages. Select Yes, always, Don't ask again. With this
setting, any additional SMS messages sent to the device will not require answering this
question again.

Figure 17. WMA 3

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Implementing Push technology with J2ME and MIDP Page 23 of 30

MIDlet activation and displaying the incoming message
Finally, with the SMS message in-hand, AMS activates the MIDlet through a call to
startApp() and displays the message.

Figure 18. WMA 4

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 30 Implementing Push technology with J2ME and MIDP

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Implementing Push technology with J2ME and MIDP Page 25 of 30

Section 7. Reviewing the code

Class definition
Take a few moments to review the code. Below is the class definition of the MIDlet.

public class PushDemo extends MIDlet implements CommandListener
{
private Display display; // Reference to display
private Command cmExit; // Command to exit
private Alert alertIncomingMessage; // Incoming message
int incomingPortNum = 1000; // Port to listen for connection
MessageConnection incomingConnection = null; // Connection for receiving the message
Message incomingMessage; // Incoming message

...

}

A few points worth noting:

• The Alert is used to display the incoming SMS message.

• The incomingPortNum can be any port that is not currently in use.

• The incomingConnection is the network connection.

• The incomingMessage refers to the incoming data.

Constructor
There are two primary steps when allocating an instance of this MIDlet class: get a reference
to the display and allocate a modal Alert that displays the incoming SMS as well as listens for
an event to exit the MIDlet.

public PushDemo()
{
display = Display.getDisplay(this);

alertIncomingMessage = new Alert("Incoming Message");
alertIncomingMessage.setTimeout(Alert.FOREVER);

cmExit = new Command("Exit", Command.EXIT, 1);
alertIncomingMessage.addCommand(cmExit);

alertIncomingMessage.setCommandListener(this);
}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 30 Implementing Push technology with J2ME and MIDP

Check for incoming connection
Let's see what transpired inside the MIDlet to receive and display the incoming message.
Looking inside the startApp() method, the first check is to see if the MIDlet was invoked
based on an incoming connection. If it wasn't, simply exit the MIDlet:

public void startApp()
{

String connectList[];

// Was the MIDlet started by an incoming connection?
connectList = PushRegistry.listConnections(true);
if (connectList == null || connectList.length == 0)
{
// Started by the user, exit
destroyApp(false);
notifyDestroyed();

}
else
...

The true parameter to the listConnections() method specifies to return only the
connections that have input (data) available.

If from a remote resource
If the connection was from a remote sender, the code in the else block is run:

if (connectList == null || connectList.length == 0)
{
// Started by the user, exit
...

}
else // Stared from an incoming connection...
{
try
{
incomingConnection = (MessageConnection) Connector.open("sms://:" + incomingPortNum);

// Receive the message
incomingMessage = incomingConnection.receive();

// If it's a text message, add it to the alert
if(incomingMessage != null && incomingMessage instanceof TextMessage)
{
alertIncomingMessage.setTitle("From: " + incomingMessage.getAddress());
alertIncomingMessage.setString(((TextMessage)incomingMessage).getPayloadText());

// Display the message

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Implementing Push technology with J2ME and MIDP Page 27 of 30

display.setCurrent(alertIncomingMessage);
}

}
catch(IOException e)
{
System.out.println("IO Exception!");

}

The Connector.open() call references the ConnectionURL parameter previously placed
in the JAD file:

MIDlet-Push-1: sms://:1000, PushDemo, *

Once the message has been received, the title and message of an Alert component are set to
the address of the sender and the incoming text message, respectively. The final step is to set
the current displayable to the Alert just created, which will display the incoming SMS message
on the device!

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 30 Implementing Push technology with J2ME and MIDP

Section 8. Summary and resources

Summary
WTK offers a range of tools for developing push applications. In this tutorial I discussed how
MIDlets created with MIDP 2.0 can be activated through an incoming network connection or a
scheduled alarm. I also presented the two registration options, dynamic and static, which notify
the AMS of the intent to activate a MIDlet.

Most of this tutorial dealt with creating an application that is activated based on receiving an
SMS message. There are many steps to package, deploy, install, and test a push-based
MIDlet. However, with WTK the process is greatly simplified with the abundance of built-in
tools that support working with and simulating almost every process along the way.

Resources
• Visit Core J2ME for additional source code, articles, and developer resources.

• Refer to the developerWorks tutorial MIDlet development with the Wireless Toolkit to see
how this tutorial built on the previous tutorial.

• For information on the Java Development Kit 1.4.1 refer to the JDK.

• The J2ME Wireless Toolkit can be located here.

• For information on the Java Specification Request for Wireless Messaging API see JSR 120.

• Information on the Java Community Process can be found here.

Feedback
Please let us know whether this tutorial was helpful to you and how we could make it better.
We'd also like to hear about other tutorial topics you'd like to see covered.

For questions about the content of this tutorial, contact the author, John Muchow, at
John@CoreJ2ME.com.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Implementing Push technology with J2ME and MIDP Page 29 of 30

http://www.CoreJ2ME.com/
http://www.CoreJ2ME.com/
http://www-106.ibm.com/developerworks/edu/wi-dw-wikit-i.html
http://www-106.ibm.com/developerworks/edu/wi-dw-wikit-i.html
http://www-106.ibm.com/developerworks/edu/wi-dw-wikit-i.html
http://www-106.ibm.com/developerworks/edu/wi-dw-wikit-i.html
http://www-106.ibm.com/developerworks/edu/wi-dw-wikit-i.html
http://www-106.ibm.com/developerworks/edu/wi-dw-wikit-i.html
http://java.sun.com/products/jdk/1.4.1
http://java.sun.com/products/j2mewtoolkit
http://java.sun.com/products/j2mewtoolkit
http://java.sun.com/products/j2mewtoolkit
http://www.jcp.org/jsr/detail/120.jsp
http://www.jcp.org/jsr/detail/120.jsp
http://www.jcp.org
http://www.jcp.org
http://www.jcp.org
mailto:John@CoreJ2ME.com

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 30 Implementing Push technology with J2ME and MIDP

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	Before you start
	About this tutorial
	About the author

	Download and install the software
	Required components
	Download the Java Development Kit
	Download the Wireless Toolkit
	Install the software

	MIDlet activation
	Three ways to start a MIDlet
	Incoming network connection
	Scheduled alarm

	Registration
	Types of registration
	Dynamic registration
	Dynamic registration for incoming network connection
	Dynamic registration for alarm
	Static registration
	Examples of static registration
	Removing registration

	Example: Incoming network connection, Part 1
	Overview
	Creating the project
	Writing the code
	Simulating Over-the-Air (OTA)
	Packaging the MIDlet
	Create the push registry entry
	Build the MIDlet
	Create the JAR and JAD files
	Reviewing the JAD file
	Installing the MIDlet via OTA, Step 1
	Installing the MIDlet via OTA, Step 2
	Installing the MIDlet via OTA, Step 3
	Installing the MIDlet via OTA, Step 4
	Installing the MIDlet via OTA, Step 5
	Installing the MIDlet via OTA, Step 6

	Example: Incoming network connection, Part 2
	Open messaging console
	Entering the SMS message
	Approve incoming data request
	MIDlet activation and displaying the incoming message

	Reviewing the code
	Class definition
	Constructor
	Check for incoming connection
	If from a remote resource

	Summary and resources
	Summary
	Resources
	Feedback

