
Agent oriented specification for patient-scheduling systems in hospitals

A. Bartelt, W. Lamersdorf
Department of Distributed Systems

University of Hamburg

Vogt-Kölln-Straße 30

Hamburg, Germany

bartelt@informatik.uni-hamburg.de

T. O. Paulussen, A. Heinzl
Department of Information Systems

University of Bayreuth

Universitaetsstrasse 30

Bayreuth, Germany

paulussen@uni-bayreuth.de

1 Introduction
Patient-scheduling in hospitals is a complex task which

requires new computational methods, e.g. market mech-
anisms and enhanced support by software agents. These
demands are addressed by the MedPAge-Project (Medical
Path Agents) which covers the development of a multi-
agent-system for which an agent oriented specification will
be presented.

Firstly, based on field studies in five German hospitals,
the hospital domain is analysed (c.f. [9]). In this domain
analysis, a generic hospital structure is derived and the rel-
evant co-ordination objects for patient-scheduling are iden-
tified. Secondly, hospital specific scheduling problems are
discussed.

On the foundation of this domain analysis, the architec-
ture of the MedPAge multi-agent-system is developed, tak-
ing actual agent-oriented methodologies into account. The
agents, consisting of an individual schedule and utility func-
tion, are modeled and the co-ordination mechanism, deter-
mining the agent interactions, is described. Finally several
implementation issues are discussed.

2 Domain analysis
Hospitals are service providers. Their primary aim is to

improve the health state of their patients. Therefore, the
treatment process is the central value adding process [5].

According to their illness, patients have to undergo sev-
eral examinations and treatments during their stay in hos-
pital. Because it is in the nature of diagnostics to gain ad-
ditional information about the patients’ diseases, the nec-
essary medical treatments are often not completely deter-
mined at the beginning of the treatment process.

Further, the sequence of execution of those actions does
partially not follow a given order. But due to medical rea-
sons, there can be minimum and/or maximum delay re-
quirements between two (or more) tasks. Because these
constraints can depend on the sequence of execution, those

relations are modelled as bothway time-windows instead of
strict, binary order constraints. A task i might has to start

� immediately after,

� sometime after,

� minimum time after,

� maximum time after,

� between a minimum and maximum time after, or

� never after

a task i.

task i task j(min,max)

(min,max)

Figure 1. Bothway time-window between task
i and task j

For the majority of the tasks the patients have to attend
physically. As the patient is an exclusive resource, those
tasks can only be performed sequentially. Examples for
those patient-requiring tasks are taking x-rays and drawing
blood. However, some tasks do not require the patient to be
present, like the evaluation of x-rays or laboratory blood-
tests. These tasks can be performed simultaneously (c.f.
[4][11]).

Due to the individuality of the patients, the duration of
the medical actions are stochastic.

The treatments and examinations assigned to the patients
and the relations between them, build the pathway for these
patients through the hospital.



Additional problems for the patient-scheduling in hospi-
tals arise from complications and emergencies. The imme-
diate need of treatment for emergency patients causes dis-
turbances in the schedule. Complications, which may oc-
cur during a treatment, result in waiting times and changed
pathways for other patients.

To perform those examinations and treatments, hospital
resources, i.e. personnel, rooms and machines, are needed.
As hospitals are highly decentralised organisations, those
resources are combined in separate functional service units
[4]. However, it is not necessary that all resources belong to
the same hospital.

The units of a hospital can be aggregated, where the
highest aggregated unit represents the hospital itself, being
one part of the healthcare chain next to general practition-
ers, outdoor specialists, pharmacies and rehabilitation facil-
ities.

unit

hosts

taskneedspatient uses resource1,* 1,*1,* 1,*

1,*

1,1

Figure 2. Generic hospital model

Figure 2 shows a generic hospital model, in which the
patients need one or more treatments/examinations. Each
of those medical actions is assigned to a specific unit and
requires at least one resource for execution.

3 Architecture
The architecture of the MedPAge multiagent system is

based on the identified agent roles and the dynamic inter-
actions. Therefore, an adequate agent oriented software
engineering methodology will be identified and described,
which will be used to model the concrete MAS later in this
section.

3.1. Agent oriented software engineering method-
ologies

The research on complex agent oriented systems spans
a wide range of application domains (cf. [2]). Design of
these systems requires adequate methodologies to cope with
agent specific characteristics, which result from agent ori-
ented domain analysis.

In the past there have been various approaches to model-
ing multiagent systems and since the field of agent oriented
software engineering is currently under permanent devel-
opment. The suggested methodologies can be divided into

high level approaches, which usually focus on system ar-
chitectures, and more detailed design level approaches, e.g.
for interactions.

A specific agent oriented software engineering method-
ology will be identified and used to model high level ab-
stractions which represent the internal conceptual architec-
ture of MedPAge. As interactions are an integral part of
the MedPAge project there adequate modelling methods are
also required.

3.1.1 Overview

A few major high level methodologies include Gaia [16]
by Wooldridge et al., MaSE [15] by Wood et al., and MES-
SAGE/UML [3] by Caire et al. Gaia is a high level approach
where models are mostly textually based. One key point is
detecting all roles of the system and defining the responsi-
bilities and abilities of each role. Then, for each role the
system designer should create a textual scheme - saying
what a role can or should do. This leads to the analysis
of interactions that are necessary to perform tasks. MaSE,
also a high level approach, suggests a rather strict phase
model for agent oriented modeling. Starting from system
requirements (via use cases) and system goals, roles are de-
fined. This leads to concrete agents and to communication
between those agents. MESSAGE/UML is a graphical mod-
eling approach based on UML and incorporates some con-
cepts from other methodologies. It defines extensions to the
UML language and suggests different views and diagrams
that can be used for modeling the multiagent system. Fur-
ther, an analysis process proposed to subsequently refine the
models.

Each of the proposed methodologies has its advantages
and emphases as well as drawbacks. As currently none of
the methodologies is widely adapted or especially focussed
on the healthcare domain, MESSAGE/UML appears to be
a well suited candidate for the MedPAge project as it pro-
vides a competitive set of graphical modeling capabilities
and is integrated with the UML metamodel which is broadly
known and accepted.

3.1.2 MESSAGE/UML

This section gives a brief overview of the key approaches
and benefits of MESSAGE/UML. As the name suggests
MESSAGE/UML is an extension of the Unified Modeling
Language (UML). MESSAGE/UML uses standard UML
diagrams such as class diagrams or activity diagrams and
extends them in an agent specific way. There are several
reasons which make UML a good base for an agent ori-
ented modeling language (cf. [3]): (a) Being the de facto
standard for object oriented modeling UML gains a wide
acceptance and a high level of usage. (b) The object- and



agent-oriented paradigms are highly compatible, so agent-
oriented concepts can readily be defined in terms of object-
oriented ones. (c) UML has a meta model that makes it
extensible.

MESSAGE defines agent oriented entities as well as dif-
ferent views and corresponding diagrams on these entities
for agent oriented system analysis. There are three groups
of new concepts in MESSAGE: Concrete Entities, Activi-
ties and Mental State Entities. Concrete entities are subjects
of the agent world such as agents, roles or organizations.
Activities are tasks or interactions performed by one agent
or a group of agents. Mental state entities are elements of
knowledge that one agent has, or that is transported from
one agent to another.

Concrete Entities are Agents, Roles, Organizations and
Resources. The graphical representations are shown in fig-
ure 3.

ResourceOrga-
nization

Agent Role

Figure 3. Concrete Entities

An Agent is an autonomic unit performing some action.
A Role stands to an agent, like an interface to a class in the
standard objectoriented meaning. A Role defines the outer
behavior of an agent in an specific context. An agent can
play several roles, and one role can be played by several
agents. An Organization groups some agents and resources
to one unit performing the same means. Note, that an orga-
nization is only an entity of analysis, and (in general) will
have no direct corresponding program element. Resources
are databases or external programs used by an agent.

Activities are Tasks and Interactions (see figure 4). A
Task is a kind of elementary operation an agent performs.
An interaction describes the exchange of messages (having
some information) between two or more agents.

Task Interaction

Figure 4. Activities

Mental State Entities are objects that an agent holds in

”mind”. The graphical representation of the two types Goal
and Information Entity are shown in figure 5.

Goal InformationEntity

Figure 5. Mental State Entities

A Goal describes the wish of an agent to change to an-
other state. Goals can be elementary or composed. Infor-
mation entities are pieces of information that can be held by
an agent or be transposed from one agent to another.

MESSAGE suggests five views with its diagram types,
all taking another sub view of the whole system, so that the
views could be overlapping. The views are

� Organization View

� Goal/Task View

� Agent/Role View

� Interaction View

� Domain View

The views will subsequently be introduced at the time of
usage.

3.2 The MedPAge architecture
A basic task in designing an agent-based system is to de-

cide which entities should be modelled as agents. A criteria
for the identification of agents can be individuality. Agent
instances are typically unique in their state and lifetime and
individual pro-activeness and freedom in the form of auton-
omy are common agent characteristics.

Therefore, the identified co-ordination objects (patients
and resources) are modelled as autonomous agents, i.e.
patient-agents (P-Agents) and resource-agents (R-Agents).
This allows the representation of every single co-ordination
object with its own goals as a single agent, reflecting
the existing, decentralized structures in hospitals (see also
[4][14]). Each agent only knows its own schedule and
constraints, i.e. for the patient-agents the necessary treat-
ments, and for the resource-agents the patients to be treated.
Through this encapsulation of information and restrictions
to the object, respectively agent, which they belong to,
multi-agent-systems are capable to react dynamically to
changes, e.g. changed pathways or health state.

Additionally, knowledge agents (K-Agents) were mod-
elled. The roles of K-Agents are implemented by the P- and
R-Agents to make their states persistent when needed and
to be able to access external legacy systems like healthcare



information systems in hospitals or embedded information
systems in hardware resources.

The organization view shows concrete entities such as
agents, roles and organizations. There are two different
types of diagrams: Structural Relationships and Acquain-
tance Relationships. Both diagrams are based on UML
class diagrams, that are extended by new entities.

The structural relationship diagram shows the structure
of the whole system being decomposed to sub organiza-
tions. In MedPAge (see figure 6) there are two roles: P-
Agent (representing a single patient) and R-Agent (manag-
ing a hospital resource). A hospital (as parent organization)
consists of patient agents (as representatives for patients)
and resources. Resources have an R-Agent, that manages
the resource, and the resources schedule. A patient agent
knows his medical path and has his personal schedule.

Hospital

Patient
Agent

1

0..*

Resource

1
1..*

Resource
Agent

1

1

1

1

Schedule
Medical

Path
Personal
Schedule

1

1

1

1

Patient

(Human-
Agent)

1

1

Figure 6. Structural relationships

The acquaintance relationship diagram focuses on the
data flow between the entities that enable an agent to do his
work. The MedPAge patient agent has to communicate with
his personal schedule, the medical path and of course the re-
source agents to book the medical treatments he needs. On
the other hand, the MedPAge resource agent has to commu-
nicate with the patient agent and with the resources sched-
ule. This leads to the acquaintance relationship diagram
shown in figure 7.

4 Co-ordination mechanism

Patient schedules are developed during negotiations be-
tween patient agents who want to get time slots for spe-
cific treatments, and resource agents who offer treatments
at certain points in time. Firstly, the utility-functions for the

Patient
Agent

Schedule

Resource
Agent

Medical
Path

Personal
Schedule

Figure 7. Acquaintance relationships

agents will be derived, and then the interaction protocols
will be described.

4.1 Utility functions
4.1.1 Health state dependent utility functions

Obviously, in a hospital the health of a patient is the major
determinant of the priority for this patient. The health of
a patient can be somewhere between total health and the
worst imaginable health state (as death is normally not the
worst health state). Furthermore, illness can be interpreted
as a loss of utility for a patient. If the disease is treatable,
the opportunity cost � ��� for not curing the patient right
away equals the difference between the achievable health
state (through treatment) z and the patient’s health state over
the time ����. Formally, this can be expressed by

������� �

� �

�

� ��������

For the necessary cardinal measurement of health, we rely
on the concept of ”years of well being”, because it already
includes the time dimension. Therefore the question is,
what time period xT of total health (1) equals one specific
time period �� of a certain health state H, i.e.

�� �� � �� � �� � � ��

For example, Torrance [12] states that one year with middle
angina pectoris equals 0.7 years of well being.

In addition, it has to be considered, that the health state
and the achievable health state can change over time. There-
fore, the patient’s opportunity costs are influenced by his
current health state 	, the development of his health state
over time ����, and the maximal reachable health state
through treatment �. If the health state does not change over
time, i.e. ���� � 	, the opportunity costs are

������� � 
��
 � � � 	�



If the health state of a patient worsens over time, assump-
tions about the course of the health state has to be made by
a physician. If we assume - for clarity - a linear reduction
by b of the health state, i.e. ���� � 	� ��, we get

������� � ��� 	��
�

�
�� � 
��

�

�
���

Figure 8 shows an exemplary course of an illness with lin-
ear reduction of the health state, resulting in a quadratic,
respectively convex opportunity cost curve.

0

0,2

0,4

0,6

0,8

1

1,2

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

time

he
al

th
 s

ta
te

opportunity cost

z

H=a-bt

Copp=µt+b/2*t2

Figure 8. Linear reduction of health state

Finally, the maximal reachable health state can decrease
(from ���� to ����). In this case a utility loss ����� for the
rest of his life 		�� would result for the patient, i.e.

����� � ����� � ������		���

As ”rest of life” (		��) is a parameter of this calculation,
we face the ethical problem that younger patients get higher
priority than older patients due to a longer assumed life-
time from now on. This problem can be avoided by han-
dling those patients as emergency patients, i.e. the opportu-
nity costs for a treatment after a reduction of the achievable
health state are infinite.

If the health state of a patient determines his P-Agent’s
utility respectively cost function, the resulting curve is at
least linear (in the case of a constant health state), but in
most cases convex (if health decreases over time). If we
have a convex curve, a task which could - ceteris paribus -
start earlier than another task, has a higher priority (compare
[4]).

4.1.2 Multi-attributive utility functions

Single agents can have multiple, even contradictory goals.
Examples for possible contradictory goals of a single
agent are a short stay in hospital versus blocked examina-
tions/treatments, i.e. gap-minimisation or physician prefer-
ences. In figure 9 the case of a decreasing health state and
the additional goal of gap minimisation is illustrated.

ga
ps

time

op
po

rt
un

ity
-c

os
ts

time

one gap

no gap

two gaps

Figure 9. Multi-attributive opportunity-cost
curves

To calculate the value of a gap, the time-trade off method
could be used. In this case it has to be determined what
amount of additional waiting time would be equal to one
less gap, i.e.

��������� ��������� � � � �	� � 
�

If the single subgoals are contradictive, a trade off be-
tween those goals is mandatory. However, there are indif-
ferent combinations of these goals. These combinations can
be drawn on an indifferent-curve (fig. 8 right). Due to the
usage of cost- instead of utility-functions, the area above
this (concave) curve is dominated by the area below this
curve, i.e. all combinations below this curve indicate a gain
of utility for this agent. In this figure it is also visible that
the importance/weight of amount of gaps decreases with the
time. This results from the decreasing health state.

4.2 Goal Achievement of Agents
Based on the described utility functions each agent tries

to achieve its goals. In MESSAGE/UML the goal/task view
shows goals, their decomposition and their relationships to
the accomplishment of a task. The goals decomposition
uses UML class diagrams to show the aggregation relation-
ships between goals and their sub goals, while activity di-
agrams are used to show relationships between the accom-
plishments of tasks and the achieved goals.

In MedPAge a goal decomposition diagram is used to
show how the goal of the whole system is decomposed into
sub goals an agent aims to achieve. One decisive goal of
the system is: ”Let all treatments take place, and let them be
optimized”. This can be separated into ”Plan all treatments”
and ”Optimize the treatments”. Planning all treatments can
be decomposed into ”get knowledge of all treatments” and
”book all treatments” as shown in figure 10.

The agent/role view would straight forward point out
goals and tasks in a diagrams for each agent/role.

4.3 Agent interaction protocols
To improve their current scheduling situation, the agents

need to interact, i.e. to co-ordinate their plans with the



All treatments
planned and

optimized

All treatments
planned

Schedule
optimized

Got knowledge of
medical path

All treatments
booked

Figure 10. Goal decomposition

other agents (c.f. [10]). To this end a market mecha-
nism for patient-scheduling was developed, in which the
agents act as egoistic market participants, trying to max-
imise their own utility. Through the usage of utility func-
tions, the agents act in a worth oriented domain, enabling
them to compromise [10]. Based on economic theory, the
total scheduling situation, i.e. the welfare of the multiagent
system improves, as long as one agent can improve its situ-
ation without harming another agent, which can not happen
in a system of non-altruistic agents (c.f. [9][13]).

For selling or buying timeslots, agents must be able to
compute the price which they are willing to pay for a spe-
cific timeslot respectively the price they have to ask for giv-
ing up a timeslot. Based on the above derived utility func-
tions, the price an agent is willing to pay for a timeslot is
less or equal to his cost reduction (utility gain). On the other
side, the price an agent asks for a timeslot is greater or equal
to his additional costs caused by re-scheduling. From this
we get

 � ����������� �����������

In our model, only the patient agents are pro-active. If
they want to improve the position of a certain task, they con-
tact the responsible unit and ask for a specific timeslot (de-
manders). In reaction to that query, the resource agent re-
serves this timeslot and contacts all affected patient-agents,
i.e. the agents who own this timeslot, and informs them
about the query of the initiator. The affected agents (sellers)
now try to re-schedule and notify the initiator about their ad-
ditional costs. If the alternative timeslots for the sellers are
already occupied, they again become users for this timeslot
and accumulate the invoked costs. This recursive process
ends either when all agents have bought into free slots, or

the cost reduction of the initiator is used up (ref. [9]).
For initial timeslots there it is necessary to calculate

prices upon improvements, the first-come first-served pri-
ority rule is used. To this end, the agents do not need initial
assets.

The interaction view of MESSAGE/UML describes an
interaction between two or more agents. In general there is
one interaction diagram showing the participants and the ex-
changed data for every relevant interaction. Note that here
there is no concrete modeling of time aspects of the interac-
tion. It is suggested to use AUML interaction diagrams to
model an interaction in detail.

The interaction in MedPAge to book a medical treatment
is shown in figure 11. The patient agent and the resource
agent participate on this interaction. The patient agent sends
an information entity called ’booking wish’ and receives
an information entity called ’confirmation sent’ by the re-
source agent.

P-Agent R-Agent
Reservation

<<participation>><<participation>>

Booking
wish

Confirmation

Figure 11. Interaction view

4.3.1 Detailed Interaction Modelling

The different modeling methodologies for agent oriented
systems that have been described above also follow differ-
ent approaches of modeling on more detailed levels such
as interactions. The high level approaches MESSAGE and
Gaia do not supported detailed interaction modeling. In the
case of MESSAGE and Gaia an interaction is modeled by
pointing out the participants of the interaction and the sub-
mitted information. There is no modeling of timing aspects
and such high level approaches for interactions are only of
a limited value for the MedPAge project. MaSE uses final
state machines to model interactions. One edge of the ma-
chine defines what the machine will do when receiving a
message. Since every participant of the interaction needs
his own interaction diagram, this method is rather hard to
read.

There are several specialized methods for modeling in-
teractions in an agent-oriented context like Message Se-
quence Charts (MSC) [7], UAML [6], UAMLe [6], AUML
[8] and EAUML [6].



UAML was the former FIPA standard for protocol dia-
grams (PD), that was replaced by AUML. AUML basically
enhances UML sequence diagrams, which specify which
and how interactions can be performed between participat-
ing entities. Compared to the final state machine diagrams
in MaSE, this is the more intuitive and readable way of
modeling interactions. There is no large difference between
the two approaches of UAML and AUML in semantics -
but UAML is not UML based like AUML. EAUML is a
suggested extension of AUML. EAUML defines new con-
nectors for the sequence diagrams that point out dependen-
cies such as direct causality of two messages or message
synchronization.

Finally (E)AUML was chosen to specify interactions in
MedPAge (see [1] for details) since it provides rich mod-
eling capabilities and has a wide adoption because of the
underlying modeling methodology UML.

5 FIPA based implementation

The analysis resulted in the MedPAge architecture
shown in figure 12 as the combination of the above de-
scribed views.

Hospital

Resource

Schedule

Medical
Path

Personal
Schedule

P-AgentR-Agent
Reservation

<<participation>> <<participation>>

Confirmation

Booking
wish

Schedule
optimized

All treatments
planned

medical pathes
known

1..*

1

0...*
1 1

1

11

Figure 12. Architectural main entities of Med-
PAge (adapted MESSAGE/UML diagram)

The MedPAge system itself is implemented using Java
and the FIPA-OS agent platform which conforms to the
FIPA standard specifications for the interoperation of het-
erogeneous software agents. Figure 13 shows the details
of the highly relevant classes of the implemented MedPAge
application logic in an UML diagram.

Patient and resource agents extend the FIPAOSAgent and
register with the FIPA-OS platform when they are started.
Additionally, each resource agent registers with the Direc-
tory Facilitator of the platform to advertise the reservation

FIPAOSAgent

+registerWithAMS()

MedpageAgent

-treatmentPath
-schedule

PatientAgent

+registerWithDF()

-resource
-schedule

ResourceAgent

+checkSlot()
+add()
+addNextFit()

-entries

Schedule

+getLength()
+moveBeginTo()

-begin
-end

TimeSlot

1 *

ResourceSchedulePatientSchedule

«uses» «uses»

+readAll()

+reset()
+getNextNode()

TreatmentPath

«uses»

+readAll()
+writeAll()
+getField()

-dbConnectino
-fields

DBEntity

-id
-vorname
-nachname
-geschlecht

EntityPatient
EntityResource

-beschreibung

EntityTreatment

EntityReservation

-beschreibung

EntityTemplate

EntityTreatmentNode

EntityTreatmentEdge

«uses» «uses»

«uses»

Figure 13. MedPAge UML class diagram (con-
densed)

service it provides. When a P-Agent needs to make a reser-
vation for a certain resource it is able to locate the appropri-
ate R-Agent by querying the Directory Facilitator Agent.

Communication between agents occurs via the Agent
Communication Channel provided by FIPA-OS, allowing
a distributed configuration of agents across interconnected
platforms. The interactions modelled in (E)AUML are
based on standard FIPA speech acts and wherever possible
standardised interaction protocols were used, e.g. the FIPA
Request Interaction Protocol.

Application data is stored in a relational database (Ora-
cle 9i), accessed via JDBC by a set of classes which pro-
vide an object oriented interface to the other components.
Thus, the entire system may be easily adapted to changes
and extensions in the database model that might be required
in subsequent steps of development.

An API to several elements of the domain is provided by
another package to be used by the agents to accomplish their
goals. TreatmentPath objects are generated from templates
stored in the database and allow P-Agents to plan the reser-
vations they need to make. Schedule objects are used by
both P- and R-Agents to keep track of scheduled treatments
and TimeSlot objects represent time intervals occurring in
negotiations between agents.

A GUI is part of the MedPAge system as well. Each
R- and P-Agents currently features it’s own GUI allowing
the agent’s activity to be monitored and influenced. Addi-
tionally, a control center provides a means to start and stop



the agents and to add patients, resources and templates. A
JSP- and applet-based web front-end for remote access is
currently under development.

6 Conclusions
For patient scheduling, a generic hospital model was

derived in which the patients and resources are identified
as the relevant co-ordination objects. Based on their indi-
vidualism, those co-ordination objects are modelled as au-
tonomous agents, where each of those agents is in posses-
sion of its own schedule and goals. The goals of the agents
are represented through (multi-attributive) cost functions,
which they try to minimize. For agent co-ordination, a mar-
ket mechanism (MedPaCo) was developed and the agent in-
teraction protocols are modelled. For agent oriented soft-
ware engineering the MESSAGE/UML methodology and
the (E)AUML interaction modelling were adapted to sup-
port the FIPA-OS based implementation.

Further work has to address security aspects, as the data
and information dealt with in hospitals is very sensitive
(patient-records must be strictly protected against third par-
ties) and mission critical (the information about a patient
must be correct and always immediately accessible for the
persons involved in treatment).

Acknowledgements
We would like to thank Deutsche Forschungsgemein-

schaft (DFG) for funding this work under the project
title Agentenbasierte Planung und Koordination funk-
tionsübergreifender Aktivitäten in medizinischen Behand-
lungspfaden (MedPAge) as part of SPP 1083.

Furthermore we acknowledge the work of Christian
Gräfe, Wilfried Röper, Henry Becker, Jürgen Gerstacker
and Franz Rothlauf in helping us to develop and implement
these concepts.

References
[1] M. Awizen and T. O. Paulussen. Modellierung von Kommu-

nikationsprotokollen für die dezentrale, agentenunterstützte
Koordination von Krankenhausprozessen. In W. M. T.
Bauknecht, K.; Brauer, editor, Informatik 2001, pages 883–
888. Österr. Computer-Ges., 9 2001.

[2] A. Bartelt and W. Lamersdorf. Agent-oriented concepts to
foster the automation of e-business. In A. M. Tjoa, R. R.
Wagner, and A. Al-Zobaidi, editors, 11th International Work-
shop on Database and Expert Systems (DEXA 2000), pages
775–779, London, 2000. IEEE, Los Alamitos, California;
Washington; Brussels; Tokyo.

[3] G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo, J. Gomez,
J. Pavon, P. Kearney, J. Stark, and P. Massonet. Agent ori-
ented analysis using message/uml. In Agent-Oriented Soft-
ware Engineering (AOSE), pages 101–108, Montreal, 2001.

[4] K. Decker and J. Li. Coordinating mutually exclusive re-
sources using GPGP. Autonomous Agents and Multi-Agent
Systems, 3(2):133–157, 2000.

[5] R. Feinen. Patientenbezogene Organisation von Be-
handlungsprozessen. Profitcenter und Prozessorien-
tierung: Optimierung von Budget, Arbeitsprozessen und
QualitätProfitcenter und Prozessorientierung: Optimierung
von Budget, Arbeitsprozessen und Qualität, 1999.

[6] J.-L. Koning, M.-P. Huget, J. Wei, and X. Wang. Extended
modeling languages for interaction protocol design. In Agent-
Oriented Software Engineering (AOSE), pages 93–100, Mon-
treal, 2001.

[7] Mauw, Reniers, and Willemse. Message sequence charts in
the software engineering process. 2001.

[8] J. Odell, H. V. D. Parunak, and B. Bauer. Extending uml for
agents. In G. Wagner, Y. Lesperance, and E. Yu, editors,
Agent-Oriented Information Systems Workshop at the 17th
National conference on Artificial Intelligence; AOIS Worshop
at AAAI 2000, pages 3–17, Austin, TX, 2000.

[9] T. O. Paulussen, F. Rothlauf, and A. Heinzl. Konzeption eines
Koordinationsmechanismus zur dezentralen Ablaufplanung
in medizinischen Behandlungspfaden (MedPaCo). 2001.

[10] J. S. Rosenschein and G. Zlotkin. Rules of Encounter. MIT
Press, Cambridge, MA, 1994.

[11] J. Schlüchtermann. Patientensteuerung. Verlag Josef Eul,
Bergisch Gladbach, Germany, 1990.

[12] G. W. Torrance. Utility approach to measuring health-related
quality of life. Journal of Chronic Diseases, 1987.

[13] M. Weigelt. Dezentrale Produktionssteuerung mit Agenten-
Systemen: Entwicklung neuer Verfahren und Vergleich mit
zentraler Lenkung. Dt. Univ.-Verl., Wiesbaden, 1994.

[14] C. Weinhardt and P. Gomber. Domänenunabhängige Koordi-
nationsmechanismen für die dezentrale betriebliche Planung.
Information Management, pages 6–16, 1996.

[15] M. F. Wood and S. A. DeLoach. An overview of the multi-
agent systems engineering methodology. In The First Inter-
national Workshop on Agent-Oriented Software Engineering
(AOSE-2000), 2000.

[16] M. Wooldrigde, N. R. Jennings, and D. Kinny. The gaia
methodology for agent-oriented analysis and design. Au-
tonomous Agents and Multiagent Systems, 3(3):285–312,
2000.


