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Abstract
Use cases in the Internet of Things (IoT) and in mobile clouds often require the interaction of one or more mobile devices 
with their infrastructure to provide users with services. Ideally, this interaction is based on a reliable connection between the 
communicating devices, which is often not the case. Since most use cases do not adequately address this issue, service qual-
ity is often compromised. Aimed to address this issue, this paper proposes a novel approach to forecast the connectivity and 
bandwidth of mobile devices by applying machine learning to the context data recorded by the various sensors of the mobile 
device. This concept, designed as a microservice, has been implemented in the mobile middleware CloudAware, a system 
software infrastructure for mobile cloud computing that integrates easily with mobile operating systems, such as Android. 
We evaluated our approach with real sensor data and showed how to enable mobile devices in the IoT to make assumptions 
about their future connectivity, allowing for intelligent and distributed decision making on the mobile edge of the network.

Keywords Mobile clouds · Internet of Things · Context awareness · Context forecast

1 Introduction

Mobile devices such as smartphones, wearables and sensor 
nodes have become more powerful every year. Nevertheless, 
they often rely on the resource augmentation through cen-
tralized resources, enabling a multitude of cloud-augmented 
mobile applications. Examples are location-based advertis-
ing, real-time sensor networks, the Nvidia Shield video-
gaming console (Nvidia 2019), which computes parts of 
the gameplay on remote resources, or the voice recognition 
assistant Siri (Apple 2019). Common to these use cases is 
the fact, that they rely on a preferably fast and stable con-
nection to centralized or edge clouds (Abbas et al. 2018). 
However, the typical scenario of a moving user illustrated 
in Figure 1 shows that this is often not the case. Even with 

upcoming 5G networks it is assumed that the obstacle of 
the intermittent connectivity of mobile devices will persist 
(Patel et al. 2017).

Knowledge about the future connectivity of mobile 
devices allows developers to design their applications 
accordingly and allow an improved usability and user expe-
rience, for example by deciding whether to prefetch data or 
postpone the synchronization with cloud services. Moreover, 
information about the current and future bandwidth can be 
used to decide when to activate the wireless network inter-
faces, e.g. GSM or WiFi, of the mobile device. Hereby, the 
interfaces will only be activated in situations where a high 
bandwidth can be achieved, improving the ratio between 
the required energy and the transferred data and thus saving 
energy, often the most limited resource on mobile devices.

Currently, many of the proposed solutions in the domain 
of connectivity forecasts are limited to specific use cases 
and only allow short-term forecasts. Filling this gap, this 
paper, which is based on our previous works in the domain 
of context forecasts (Orsini et al. 2016, 2019), aims to pro-
vide a concept for the connectivity forecast on a multitude 
of different mobile devices, allowing them to reason about 
their future bandwidth. This way, a more efficient interac-
tion between mobile devices as well as between cloud and 
edge cloud resources becomes possible and can provide a 
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higher user experience while at the same time saving energy. 
Hence, the contributions of this paper can be summarized 
as follows:

– The concept of a modular connectivity service that is 
able to run on a multitude of devices. Firstly through the 
dynamic adaptation of the computational requirements 
and secondly through the adaptation to the relevant 
sources of information.

– Insights into specific sub-problems of this concept, such 
as the cold start problem and a simulation that deter-
mines, which and how much information about the con-
text1 of the mobile device is required to allow reliable 
forecasts.

– A quantitative evaluation of the presented approach based 
on realistic mobile device usage data provided by the 
Lausanne Data Challenge Campaign (LDDC) (Laurila 
et al. 2013).

The remainder of this paper is structured as follows: Sect. 2 
summarizes related work, afterwards Sect. 3 derives require-
ments and describes our own approach, that is subsequently 
evaluated in Sect. 4. At the end, we summarize our findings, 
highlight open challenges and give prospects for future work 
in Sect. 5.

2  Related work

As summarized in (Orsini et al. 2018a), the task of forecast-
ing the future connectivity of a mobile device can either be 
seen as a software engineering- or a networking problem. 
Seen primarily as a software engineering problem, solutions 

in the domain of mobile cloud computing like Serendipity 
(Shi et al. 2012) try to distribute computation tasks among 
other nearby mobile devices to speed up computation or 
to save energy. Hereby, Serendipity takes into account the 
future state of the mobile network connection by forecasting 
its reliability. Similarly, IC-Cloud (Shi et al. 2013) focuses 
on the challenge of dynamically offloading computation 
tasks to cloud resources, by taking into consideration that 
the necessary code and data can be delivered and the results 
received in time before the next link failure is likely to hap-
pen. Specifically developed for the application in mobile 
edge computing, Sato et al. (Sato and Fujii 2017) recently 
proposed a radio environment aware algorithm that is able 
to forecast the mobile connectivity between mobile nodes 
in access points.

Seen primarily as a networking problem, solutions like 
BreadCrumbs (Nicholson and Noble 2008) try to forecast 
the future connectivity to WiFi hotspots based on a model 
of the environment. Recorded sensor data is used to gener-
ate user-based models which are then applied to schedule 
the network usage based on connectivity forecasts. Bread-
Crumbs relies on the fingerprinting of hotspots that is com-
bined with GPS data to forecast a mobile user’s bandwidth. 
Focusing on the aspect of the location forecasting even fur-
ther, in NextPlace (Scellato et al. 2011) a non-linear method 
is employed to forecast the time and duration of a user’s next 
visit to one of his significant places. Their method identifies 
patterns in a user’s mobility history that are similar to his 
recent movements in order to forecast his behavior. Simi-
larly, Anagnostopopulus et al. (Anagnostopoulos et al. 2011) 
employ supervised learning to perform a classification of 
trajectories which is then used to forecast the future location 
of mobile users.

Further related works can either be found in the domain 
of mobility- and connectivity forecasts such as in mobile 
ad-hoc networking (MANET) or vehicular ad-hoc network-
ing (VANET) (Fernando et al. 2013; Shiraz and Gani 2014; 
Lee 2008). Summarizing the previous findings, it can be 
concluded that several solutions have been proposed to con-
tribute to the problem of connectivity forecasting. However, 
current solutions are either not able to operate on a broad 
range of mobile devices or are not able to provide the level 
of accuracy, required in IoT scenarios such as computation 
offloading (Orsini et al. 2018a).

3  Bandwidth forecast service

In this chapter, we will first define the design goals for the 
bandwidth forecast before we discuss different architec-
tures along with the integration of forecasts into mobile 
applications. Subsequently, we choose different models 
that we expect to fit the problem of the bandwidth forecast. 

Fig. 1  Mobile device moving between edge clouds

1 According to Dey and Abowd, context is any information that can 
be used to characterize the situation of an entity. For details see (Dey 
and Abowd 1999).
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Afterwards, we choose the dataset to perform our analysis 
on and decide how to prepare the data.

3.1  Problem statement

As discussed in Sect. 1, forecasting the connectivity of a 
mobile device allows a more effective use of its resources. 
In particular, this can help to make more efficient use of the 
limited bandwidth and hereby also the available energy. To 
achieve this goal, mobile applications need to be provided 
with the information about the current and future bandwidth 
to be able to decide when to use that resource. For example, 
when to make extensive use by prefetching data or when to 
conserve this resource by postponing the synchronization 
with cloud services.

Accordingly, a bandwidth forecast is required for users 
that are moving between access points such as GSM base 
stations and WiFi hotspots, as illustrated in Fig. 2.

3.2  Design goals

Apart from the functional requirement of a forecast with 
high accuracy, developing the Bandwidth Forecast Service 
on a mobile device requires to meet several non-functional 
requirements. Accordingly, we summarize the specific 
design goals for the development of this service with the 
following key requirements:

– Support for different time intervals and forecast horizons 
Apart from real-time applications, it is often sufficient to 
forecast the average bandwidth in a certain time interval. 
The duration of the time interval depends on the use case 
and can range between minutes and hours. Likewise, the 
required forecast horizon for the service ranges from the 
next minute to a bandwidth forecast for the next day.

– Resource-conserving and customizable The service 
dynamically selects the appropriate learning algorithms 

based on the required accuracy and the resources avail-
able on the mobile device.

– Can handle small amounts of data: The service is able 
to operate even when there is little data available on the 
mobile device.

– Privacy aware It is possible to process all information 
on the mobile device itself. The requirement for external 
data processing should be optional.

– Open for extension The service is open for extension with 
new learning algorithms or new data sources.

3.3  Architecture

In order to forecast the bandwidth of a mobile device that is 
subject to changing connectivity, it is necessary to generate 
the forecast on the affected device itself, to allow for con-
tinuous availability of the service. Thus, although the use 
of a forecast model, has to be done on the mobile device, 
the creation of this model, the training, does not necessar-
ily have to be performed on the mobile device as well. This 
leads to a number of options for how the forecasting model 
is generated and what data is used for it.

For the generation of the forecasting model, the following 
alternatives can be envisioned:

– Local training If the training data contains sensitive 
information, it may be necessary to carry out the train-
ing on the mobile device itself.

– Remote training Depending on the performance of 
the mobile device, it may be necessary to transfer the 
recorded context data into a more powerful infrastruc-
ture. In addition, a longer history of this data can be held 
in this infrastructure, which can be beneficial for the 
quality of the learned model.

Based on the ability to offload the training of the model 
into a more powerful infrastructure, not only the data of 
a user, but the data of many users can be used to train the 
model. Following the idea of distributed machine learn-
ing approaches Google recently proposed a system design 
(Bonawitz et al. 2019) that employs the concept of feder-
ated learning (McMahan et al. 2016; Rahman and Rahmani 
2018). Tailored to the domain of mobile devices, federated 
learning establishes a distributed intelligence by using the 
recorded context data to train forecast models on the respec-
tive mobile device. These models are then transferred and 
aggregated into a global model, which is then distributed to 
all participating devices, as shown in Fig. 3 (left).

Especially, when there is not enough data available, this 
approach can be highly beneficial to train a suitable forecast 
model. Furthermore, this approach is well suited to problems 
where the use case and the nature of the data is the same 
amongst all of the participating devices. In this case, large 

Fig. 2  Changing and intermittent connectivity between access points
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amounts of data generated by many users can help to train 
a global model.

However if a high level of heterogeneity is present 
amongst the participating devices, which is the case in par-
ticular in the IoT and, in addition, a part of the participating 
devices is not able to carry out the computation-intensive 
training of a forecast model itself, this approach does not 
appear promising. Accordingly, we decide to adapt this 
approach, calling it edge-centric computing, illustrated 
in Fig. 3 (right). It works as follows: Since many of these 
devices are already transmitting data, it is reasonable to 
consolidate this data on a sufficiently powerful device and 
to train a model there. This also has the advantage that the 
resulting model is automatically optimized for the context 
of the edge cloud in which it is used.

3.4  Embedding forecasts into mobile applications

As proposed in the problem statement earlier, providing a 
mobile application with forecasts can help to make more 
efficient use of the available resources. But integrating such 
of a forecast raises two important questions:

– How can the forecast be woven into the mobile applica-
tion’s business logic?

– What type of forecast model is suitable for a bandwidth 
forecast?

To be easily integrated, the consideration of the forecasts 
should follow the same way the application’s business logic 
is implemented. Accordingly the future bandwidth, which 
is typically the output of a regressor, needs to be reduced 
to a simple categorical or numerical variable, reflecting the 
available amount of bandwidth. Based on this universal 
approach, it can often be more useful to adjust the point 
forecast by making use of the underlying probability dis-
tribution. This way, a confidence interval can be used to 
forecast the minimum as well as the maximum bandwidth 

that can be assumed with high confidence. Another typical 
approach might be to reduce the bandwidth forecast to a 
classification problem, resulting in a forecast about whether 
there will be a connection or not, extended by an adjustment 
of the forecast model, depending on which misclassification 
is less desirable. Moreover, there might be specific use cases 
that benefit from other types of forecasts. Nevertheless, the 
most suitable type of forecast often highly depends on the 
use case, which is why the average expected bandwidth often 
depicts a good starting point.

3.5  Model selection

Various approaches have been proposed to forecast the 
future context of mobile users and their devices. For a gen-
eral overview, we refer to surveys such as (Sigg 2008) and 
(Mayrhofer 2004). Subsequently, in this work we focus on 
a promising pre-selection based on the aforementioned 
surveys as well as the related works in Sect. 2, that have 
presented promising approaches to identify patterns in con-
textual data and are able to translate those relationships into 
a forecast. Accordingly, during the selection of suitable algo-
rithms we focus on classification and regression techniques 
that have been successfully used in the domain of context 
forecasts.

In (Lim and Dey 2010) the authors have surveyed which 
machine learning algorithms are commonly used in scenar-
ios where context data needs to be forecasted. This evalu-
ation was refined in (Perera et al. 2014) and the following 
models were found to be the ones that where most often 
used:

– Decision trees (15 %)
– Rule-based systems (54 %)
– Hidden Markov models (13 %)
– Naive Bayes (13 %)
– Support vector machines (4 %)
– k-nearest neighbor (2 %)

Fig. 3  Distributed learning: federated learning (left) and edge-centric learning (right)
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Based on the requirements identified in Sects. 3.2 and 3.4, 
we prefer model-based learners over instance-based learn-
ers due to their lower storage requirements. Furthermore, 
we extend our selection to robust forecast models from the 
domain of time-series forecasts, that we expect to perform 
equally well (Hyndman and Athanasopoulos 2018).

Accordingly, as an extension to the algorithms used in 
the related works’ as well as a baseline for the evaluation, a 
naive forecasting model is chosen, that assumes the current 
observation to persist in the future (NAIVE).

Furthermore, as a second baseline as well as a simple 
model for mobile devices with very limited resources, we 
choose an autoregressive model (AR) that tries to forecast 
the future bandwidth by just taking into account past obser-
vations of the forecasting target itself. The AR(p) model 
assumes a linear dependency on its own previous values, 
the constant term c, the intercept, as well as the stochastic 
term � . Equation 1 defines the AR model as follows:

Based on the AR model, a more sophisticated approach 
appears to include more information than just the target 
variable itself.

As we assume that arbitrary additional sensor data can be 
highly multicollinear, we require a type of regression esti-
mator that is well-suited to deal with such types of issues. 
Least Absolute Shrinkage and Selection Operator (LASSO) 
(Tibshirani 1996) is an estimator that performs an L1 regu-
larization which adds a penalty equal to the absolute value 
of the magnitude of coefficients encouraging simple, sparse 
models, i.e. models with fewer parameters. This approach 
leads to the optimization problem shown in Eq. 2, where � 
is a nonnegative regularization parameter that can be either 
tuned manually or using a grid-search and p denotes the 
number of features.

Solving this optimization problem requires substantially 
more computation power compared to the training of the 
AR model, but promises to better capture the relation-
ship between the mobile device’s context and its future 
bandwidth.

In line with the previous selection of promising machine 
learning algorithms, we choose decision trees to cover 
higher order interactions between the individual variables 
of the sensor data and the target variable. Using gradient 
boosting (Friedman 2000), which uses ensembles of weak 
forecast models to iteratively build a stronger model, we aim 
to build a model that has a low bias and low variance at the 

(1)yt = c +

p∑

i=1

�iyt−i + �t

(2)𝛽 lasso = argmin
𝛽

1

N

N∑

n=1

(
yn − 𝛽xn

)2
+ 𝜆

p∑

i=1

||𝛽i||

same time. As an implementation, we choose XGBoost (v. 
0.8.2) (Chen and Guestrin 2016) that currently is considered 
one of the state-of-the-art machine learning algorithms to 
deal with structured data (Nielsen 2016).

Finally, it should be noted that all of the selected learn-
ers are model-based, meaning it is not necessary to keep 
the data that has been used in the training phase and highly 
reduces the memory footprint of the presented approach. 
Also, this allows to eliminate many privacy concerns, in case 
the model is used as part of a distributed approach and thus 
is shared amongst other devices, as explained in Sect. 3.3.

3.6  Runtime environment

As illustrated in Fig.  4, we employ standard Java and 
Android technology to implement the Bandwidth Forecast 
Service as a microservice which is integrated into the Cloud-
Aware mobile middleware presented in (Orsini et al. 2018a).

CloudAware is based on the Jadex (Pokahr and Braubach 
2013) middleware that provides infrastructure components, 
such as service discovery in mobile environments, and 
allows to expose the microservice. The microservice itself 
has been implemented to only be activated when a forecast 
is actually requested, mainly to save energy. Furthermore, an 
accuracy-parameter can be sent alongside with the request 
to save energy as a less accurate forecast model is used then.

To ensure effective bandwidth forecasting for mobile 
applications, it is necessary to implement the compu-
tationally intensive forecast as efficient as possible. 
Accordingly, special attention should be paid to the 
implementation of the selected learning algorithms. 
For this purpose, the runtimes of a prediction on a current 
smartphone have been evaluated and are summarized in 
Table 1. If also the training is carried out locally, the cor-
responding runtimes also become relevant and are hence 
shown in the subsequent columns.

The measurements indicate, that the predictions are rather 
resource-efficient. Furthermore, the time required to gener-
ate a forecast is negligible, regardless of which algorithm is 

Fig. 4  Forecasting service architecture
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used. Equally, the time required to train the models, using 
102 features and 500 decision trees for the XGB algorithm, 
suggests that also the training can be performed locally, 
assuming the performance of a current smartphone. Even 
devices with less computational power available are able 
to carry out the training of at least some models, taking 
into account the short training times of the AR and LASSO 
learning algorithms.

3.7  Datasset and data preparation

In January 2009 the Nokia Research Center Lausanne, 
the Idiap Research Institute and the École polytechnique 
fédérale de Lausanne initiated the creation of a large-scale 
mobile data research.

This included the design and implementation of the 
LDDC, an initiative to collect sensor data from smartphones 
created by almost 200 volunteers in the Lake Geneva region 
over a period of 18 months (Laurila et al. 2013). According 
to (Crawdad 2019) it is still the largest dataset that contains 
information about mobile devices’ bandwidth and sensor 
data, which is why we chose the LDDC dataset to derive the 
following information as the input to our simulation:

– Connectivity and bandwidth GSM/WiFi/ Bluetooth state 
(on/off), discovered MAC addresses and GSM cells, sig-
nal strength of WiFi as well as GSM cells, extended with 
our own measurements to get an assumption on the avail-
able bandwidth.

– General information about the mobile device itself time 
since the last user interaction, silent mode state, charging 
state, remaining energy, free memory.

– Date, time and location calendar events, average and esti-
mated remaining duration of stay at the current location.

– Reasoned attributes estimated duration of stay at the 
same WiFi access point or GSM cell, user is at home/
work, traveling, moving, or resting.

This information has been transformed into panel data con-
taining observations over a period of at least 18 months per 
user. Hereby, we used different time intervals of 2, 10 and 
60 minutes to be able to forecast the bandwidth in different 
granularities.

4  Evaluation

We first evaluate the performance of the selected algo-
rithms. Afterwards, we extend the evaluation and focus on 
the amount and type of data that is required to achieve good 
forecasting accuracy. Subsequently, we evaluate the perfor-
mance of generalized models, that can be used in case there 
is no data available at all for a specific user.

4.1  Simulation setup and goals

The developed Bandwidth Forecast Service is evaluated by 
selecting 20 users who have provided data of at least 18 
months to the LDDC dataset. To evaluate the performance 
we simulate the usage of a mobile device, as described in 
(Orsini et al. 2018b). This model uses the context data from 
the LDDC dataset to simulate a mobile device in its con-
stantly changing environment, which aims to reflect the 
real-world usage throughout the whole period of the obser-
vations. Hereby we aim to forecast the future bandwidth in 
a defined future time interval, as illustrated in Fig. 5. In line 
with the research goals defined in Sect. 1, we focus on the 
following three key aspects:

– Which context information correlates most with the 
future bandwidth of a mobile device and should be used 
to train a model?

– Which of the selected models performs best in capturing 
the relationships and can their respective weaknesses be 
alleviated through a combination of models?

– How much data is required and are we able to general-
ize patterns across individual users to form a distributed 
intelligence?

4.2  Feature importance

To answer the question which context variable supports the 
forecast of a future bandwidth the best, we analyze their 

Table 1  Computation times for training and prediction

Runtime (s) Prediction Training

Samples 1 5346 31,252 155,218
AR 6.2E–04 0.2 0.4 0.4
LASSO 7.5E–04 2.8 7.1 3.6
XGB 1.02E–01 479.0 2393.2 2900.6

no 
bandwidth

10 Mbit/s 
bandwidth

forecast

1:00 pm 1:05 pm 1:10 pm 1:15 pm

horizon 0 horizon 1 horizon  2

Fig. 5  Operation of the forecasting service: interval-based forecasts 
for different forecast horizons
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linear relationships using the Pearson correlation coefficient 
as shown in Fig. 6. Due to the lack of space, we just show the 
most relevant correlations of the total 112 features contained 
in the panel. As expected, the current bandwidth, exempli-
fied as avg. wifi bandwidth, is primarily correlated with con-
text variables that describe the current connectivity of the 
mobile device as well as its physical location. Although the 
correlation plot in Fig. 6 shows a high correlation between 
many of the context variables, it supports the hypothesis 
about the relevance of physical and temporal dependencies.

Summarizing the first aspect of the evaluation, it can be 
concluded that the availability of these variables helps to 
forecast the future bandwidth of a mobile device. However, 
this assumption mainly refers to moving devices that users 
carry with them. Other scenarios in the IoT, apart from the 
bandwidth forecast, may exhibit other relationships and 
hence other variables can become the most relevant features 
for the forecast.

4.3  Forecasting accuracy

The aforementioned simulation is carried out for 20 users 
of the dataset to validate the general applicability of our 
approach. For some parts of this evaluation more mean-
ingful results can be shown by looking at specific users or 
timeslices. Therefore, some of the following evaluations 
are shown only for distinct subsets of the entire simula-
tion results, as mentioned in the captions of the respective 
figures.

Accordingly, we perform an ex-post evaluation using a 
rolling window approach for which we assume a weekly 
retraining of the models. This approach takes into account 
that at the beginning of the simulation period only lit-
tle data is available. Where applicable, the hyperparam-
eters are tuned using grid searches and cross-validation. 
Although this task would typically not be carried out in 
a real-world implementation, it helps to estimate the full 
potential of the evaluated models.

To show the general usefulness of the trained models, 
Fig. 7 presents the actual and the forecasted bandwidth for 
different context intervals in conjunction with a fixed hori-
zon. Fig. 8 shows different forecasting horizons together 
with a fixed context interval, both on a randomly chosen 
day of the simulation.

A first look at the data leads to the assumption that only 
the XGBoost model is able to properly capture the rela-
tionships between the context data and provides the most 
accurate forecasts of the future bandwidth of a mobile 
device. Moreover, Fig. 9 presents the corresponding error 
distributions, underlining that XGBoost also provides the 
most unbiased forecasts. However, for a proper evaluation 
of the forecasting accuracy, an appropriate error-measure 
needs to be selected. Since this depends heavily on the 
use case, we choose the typical linear and quadratic error 
measures, shown in Table 2 for a context interval of one 
hour.

With a root mean squared error (RMSE) ranging from 
38.7 for a bandwidth forecast for the next hour to a RMSE 
of 54.3 for a forecast in 20 h, XGBoost appears to be the 
most robust and accurate predictor for this problem. Nev-
ertheless, the LASSO and the AR model can depict inter-
esting alternatives, when computation resources are low or 
the use case does not require such a high level of accuracy.

The results of the simulation also show that each of the 
chosen models has strengths and weaknesses with respect 
to the desired error measure and forecasting horizon. This 
suggests the usage of a combination of the existing mod-
els, hereafter referred to as ”COMBINED”. This model 
uses an XGBoost model as an ensemble learner that com-
bines the forecasts of the existing four models, employing 
the forecast horizon as an additional feature. As depicted 
in Fig. 10 and Table 2, the error distribution of this model 
shows, that it is able to provide the most accurate and 
unbiased forecasts among all selected models.

Summarizing the second aspect of the evaluation, 
Fig. 11 shows the distribution of the RMSE for the dif-
ferent users. Here, it can be seen that, depending on the 
specific usage patterns, a certain deviation of the mean 
errors can be expected. Therefore, depending on the use 
case, the benefit of a highly uncertain forecast needs to be 
assessed before it is integrated into a mobile application.

Fig. 6  Correlation matrix for the context variables
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4.4  Selecting training data

Next to the selection of an appropriate model, choosing the 
right data to train a forecast model is also a crucial task, 
especially in scenarios where the usage, the physical loca-
tion or the surrounding environment can lead to changes 
in the network topology at any time, either temporarily or 
indefinitely.

If a forecast model is trained without the majority of the 
expected events, it is likely that it fails to map its general-
ized relationships to new events adequately. In practice, this 
means that if a mobile device on which a forecast model 
was trained was not exposed to a particular situation, even 
a very good forecasting model will not or not adequately 
forecast that event. At the same time, if too many old events 
are present in the training set and their temporal order is not 
taken into account, outdated patterns are learned, and the 
adaptation to the current environment of a mobile device 
will be impaired.

Both cases often affect the forecasting quality and hence, 
must be prevented. Accordingly, we evaluated the forecast-
ing quality using different sizes of training sets, addressing 

the third aspect of the previously defined goals of the evalu-
ation: what data should be taken into account while building 
a forecast model. Although this statement is based solely on 
the use of the LDDC dataset, it can be seen in Fig. 12 that 
with approximately 500 observations, a good forecasting 
quality can be reached, with respect to the achievable opti-
mum for this model. Depending on the selected model, it can 
also be seen that larger amounts of training data, i.e. more 
than 10,000, can have a negative impact on the forecasting 
accuracy, as outdated patterns might be overweighted to the 
disadvantage of current, relevant ones.

4.5  Generalized models and combined forecasts

Based on the findings of the previous two subsections, we 
continue to address the last aspect of the evaluation. We 
analyze if a generalized model, trained with the data of other 
users and their mobile devices is able to serve as a general-
ized model for devices on which no training data is avail-
able or on which the training of a model is not possible due 
to their limited resources. Accordingly we use the sensor 

Fig. 7  True and forecasted bandwidth for different models and context intervals, horizon: next interval
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data of ten users to forecast the connectivity of other ten 
users. As shown in Fig. 13, it can be seen that the relevant 
amount of data to train an individual model is available after 
three to four weeks. Using such a generalized model also 
helps to mitigate the cold start-problem. Switching from 
the pre-trained model to a user-specific model can easily be 
decided by measuring the ex-post accuracy and switching 
accordingly.

5  Conclusion

In this paper, we proposed a novel approach for a Bandwidth 
Forecast Service for mobile devices in mobile edge and IoT 
scenarios.

Following a survey of related works, we pointed out 
the design goals and discussed existing concepts in order 
to design our own approach of a forecasting service. Sub-
sequently, using real usage data of the LDDC, we high-
lighted the benefit of using the mobile devices’ sensor data 

to forecast their future bandwidth. Here, we showed that 
the XGBoost model is best suited to forecast the future 
connectivity of mobile devices in a constantly changing 
environment, only surpassed by a combination of models. 
Afterwards, we highlighted which sensor data is the most 
relevant for this task and discussed alternatives, in case this 
data is not available. Although XGBoost was able to provide 
a high forecast accuracy, its training phase might need to be 
offloaded to more powerful cloud resources. We addressed 
this issue with a federated approach that allows to provision 
less powerful devices with pre-trained models of the same 
edge cloud or from a larger amount of users, forming a dis-
tributed intelligence.

This contribution can support a multitude of scenarios 
where the limited bandwidth of a mobile device needs to be 
forecasted. Mainly to mitigate the effect of upcoming net-
work bottlenecks by either delaying, advancing or adapting 
data transfers, but also to save energy. Furthermore, the dis-
covered relationships can also positively influence other sce-
narios that require to forecast the context of mobile devices.

Fig. 8  True and forecasted bandwidth for different models and horizons, interval: 10 minutes
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5.1  Limitations and future work

Nevertheless, to reliably forecast the wireless connectiv-
ity by forecasting the users mobility patterns is a com-
plex task and still considered an open challenge (Farris 
et al. 2018; Patel et al. 2017). In our future research, we 
plan to optimize the bandwidth forecast by only choosing 
the most relevant features and extend the evaluation to 

simulate different use cases that make use of the band-
width forecast. Hereby, we aim to estimate the actual ben-
efit of our approach. Furthermore, the selection of the 
examined models is the result of a preselection. In our 
future work, we will explore other categories of models, 
tailored to the quickly changing context as well as to the 
limited computation and memory resources of mobile and 
IoT devices.

Fig. 9  Error distributions for different models, context intervals and horizons

Table 2  Error measures for 
different models and horizons

Error Mean Abs. error (MAE) Mean Abs. Perc. error (MAPE) Root mean squared 
error (RMSE)

Horizon 1 5 20 1 5 20 1 5 20
AR 37.2 46.5 44.7 85.5 118.3 124.7 48.4 55.1 54.0
COMBINED 18.6 19.1 18.9 44.4 51.6 54.6 29.5 30.8 31.2
LASSO 33.6 50.6 55.6 77.4 131.2 164.7 47.8 68.6 75.4
NAIVE 20.8 41.4 47.6 49.6 107.9 133.0 43.5 65.4 71.2
XGB 26.9 35.9 40.6 62.0 92.2 110.6 38.7 48.7 54.3
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