AN ACTOR-BASED FRAMEWORK FOR
NEGOTIATING MOBILE AGENTS

M.T. TU, C. SEEBODE, F. GRIFFEL AND W. LAMERSDORF *

Distributed Systems Group, Computer Science Department
University of Hamburg, Germany
Vogt—-Kolln—Str. 30, 22527 Hamburg, Germany
[tu,1seebode, griffel,lamersd] @informatik.uni-hamburg.de

In this paper, a framework to integrate negotiation capabilities — particularly com-
ponents implementing a negotiation strategy — into mobile agents is described.
This approach is conceptually based on the notion of an actor system which de-
composes an application component into autonomously executing subcomponents
cooperating with each other. Technically, the framework is based on a plug-in
mechanism enabling a dynamic composition of negotiating agents which is pre-
sented as a complete design pattern.

Keywords: negotiation, mobile agent, interaction patterns, electronic com-
merce.

1 Introduction

Deploying agent technology — especially mobile agents — as a basis for building the
information infrastructure of an emerging “Net”-society is one of the most chal-
lenging issues in many research areas. Speaking drastically, one can think of this
kind of research, which is more and more associated with notions like “community
computing” !, as designing the future society. This is at least true for the deploy-
ment of mobile agents in electronic commerce. Being the central interaction scheme
in economic activities, negotiation is one of the main focuses in the development of
software agents to perform online commercial transactions. The incorporation of
electronic commerce capabilities into mobile agents has been developed under sev-
eral aspects. However, the integration of intelligent capabilities like those needed
for negotiation into mobile agents raises new requirements leading to a different re-
search path, which focuses on integration issues that can be dealt with on a general
level, i.e. independent of the respective contributing research areas 2.

This paper presents a component architecture of self-interested negotiating mo-
bile agents. It is implemented in the context of the DynamiCS (Dynamically
Configurable Software) project at the University of Hamburg. This architecture
puts a strong emphasis upon the fact that mobility and intelligence are not opposed,
but rather orthogonal to one another. The ability to negotiate autonomously — e.g.
to bid at Internet auctions — can be considered a useful intelligent capability which
is directed to a clear goal, i.e. finding the best possible deal according to a given
value function. However, even when restricted to E-Commerce scenarios, the term
negotiation can still cover many different types of processes, during which the par-
ticipants try to achieve some kind of common agreement. Therefore, we proposed

* This work is supported, in part, by grant no. Lal061/1-2 from the German Research Council
(Deutsche Forschungsgemeinschaft, DFQG)

a generic protocol specification language to precisely express the semantics of a ne-
gotiation type 2. Moreover, it is a central feature of the presented architecture
that the choice of strategy, protocol or communication language is not restricted by
any technical issues which arise in the context of integration. In other words, it is
an explicit goal to subsume different kinds of intelligent capabilities into the same
architecture and to make it possible to switch between them dynamically, even in
the same negotiation. Whereas the issues of communication language and protocol
compliance are discussed in the publications cited, this paper will have a specific
focus on how to embed different negotiation strategies into mobile agents and the
corresponding plug-in mechanism.

Implementation constraints The agent architecture presented here is em-
bedded into the DynamiCS project at the Distributed Systems Group at University
of Hamburg. For implementation work related to this project, Java was chosen as
the implementation language and Voyager as the basic mechanism for distribu-
tion and mobility. However, the aim of this architecture is to study the basic
requirements of a system of self-interested negotiating mobile agents which can be
considered independently of any concrete implementation.

The remainder of the paper is organized as follows: Section 2 describes an actor-
based negotiation framework capturing the functional decomposition of the mental
capabilities of a negotiating agent into active objects. In particular, the structure
of this framework, its main properties and a practical application approach are
presented. Section 3 presents a dynamic plug-in mechanism as the basic composi-
tion technique of the framework. Section 4 finally sums up the paper by giving an
outlook on current work done in the project and some open issues that need to be
investigated further.

2 An actor-based negotiation framework

The development of self-interested negotiating agents requires an understanding of
the sequence of events in a negotiation. The structuring of the overall task of a
negotiating agent into specialized modules which can be dynamically plugged into a
mobile agent (or agent frame) is the main design rationale behind the construction
of the DynamiCS agents. Modules represent the agent’s capability to

communicate in different control languages (e.g., KQML or XML) following ei-
ther a stream-oriented communication model or to expose an object-oriented
communication interface that other agents holding a reference can use to post
their messages.

comply with negotiation protocols in order to take different roles in negotia-
tions or to detect protocol incompliant behavior of other participants.

think strategically to maximize the benefit of the negotiation for the agent.

This modular approach allows for encapsulating the complexity of each task.
Communication and protocol capabilities are enforced by environmental require-
ments whereas the choice of strategy relates to the self-interest of the agent. The
choice of strategy is what decisively contributes to the success of a negotiating agent.

The implementation of a negotiation strategy realizes a more or less sophisticated
model of the agent’s intelligence concerning this goal.

A negotiation strategy in general is a mapping between a sequence of negoti-
ation messages (the negotiation history) to a set of possible actions (determined
by the specific protocol) taken in response (see 2 for a classification of negotiation
strategies). Building a framework for the development of negotiation strategies
requires to respect at least two different viewpoints. First is the developer’s view-
point. The developer of a concrete strategy needs support for the integration of
his design into the general architecture of an agent. A developer uses a concrete
model of a problem domain, builds data structures and algorithms that perform the
evaluation of a negotiation situation. The framework’s viewpoint is quite different
in this sense. A framework for the development must not impose any restriction on
the domain model whatsoever. The framework is concerned with the delivering of
negotiation messages to the domain model and converting the evaluation back into
actions taken (the response messages) by the agent.

This shifts the framework’s viewpoint from a domain model to an ezecution
model. The execution model has to support the execution of the desired task
and all resource monitoring necessary for the agent’s performance in a dynamic
environment. The heterogeneous nature of the agent’s actions is a challenging
task for the design of an execution model. On the one hand, an agent plays an
autonomous, proactive role by issuing negotiation messages to other agents. This
happens for instance in an auction scenario, where any agent can deliberately posts
bids. On the other hand, an agent plays a reactive role when responding to messages
generated by other agents.

2.1 The structure of the framework

A combination of proactive and reactive behavior in an execution model requires
non-blocking communication between the participating components. The general
execution model of the framework therefore models a negotiation strategy as a
hierachical set of active objects which corresponds to the notion of an ACTOR
system 7. An actor executes in response to message passing and performs atomic
instructions that execute as a whole and in concurrency to other actors. A single
instruction can be part of an algorithm or a message gateway to another agent.
However, the framework does not prescribe the concrete number of and relationships
between actors, but only requires that they be controlled by means of a coordinator
which also represents the external interface of the whole strategy module.

Coordinators are modeled as special actors that control message dispatch to
a group of actors (see Figure 1). Coordinators are responsible for constraining
the execution of their controlled actors by defining a set of rules that have to be
evaluated before dispatching messages to a group of actors. This is provided by
Collaboration classes that are part of the plug-in mechanism (see Section 3). The
Collaboration classes implement methods and constraints that collaborate in an
actor group. Conceptually, they perform part of the functionality of Synchronizers
8

With coordinators and actors as roles in the execution model, a hierarchical

Evaluate
Negotiation
Message

P N

Negotiation Strategy
Protocol Actor

Coordinator

Protocol Module Strategy Module

Negotiation R B -~ o Coordinator
Protocol e Message
1 Strategy
*
L C— Actor
invoke

Figure 1. Roles and their distribution in the negotiation framework

composition of strategies is possible (see Figure 3). Even the integration of different
classes of negotiation strategies, e.g. a combination of analytical and evolutionary
algorithms, into one agent is supported. The developer’s task is to adapt the domain
model to the actor model.

The framework takes care of delivering all the negotiation messages included into
the negotiation protocol to the strategy. The integration of a negotiation strategy
means to specify

e the atomic instructions to be executed by the actors
e the conditions that constrain the actors’ actions
e the messages of interest for the strategy.

One possible example of mapping actors to atomic actions could be to instan-
tiate several different actors to calculate a possible response concurrently. The
coordinator calculates the utility of each response delivered by an actor and then
selects the response with the highest utility value for the agent.

2.2 Framework properties

A framework supporting an execution model of dynamic negotiation strategies is
able to introduce fine-grained control of the agent’s execution. With the possibil-
ity to execute tasks in parallel by delegating them to the actor system, there are
different kinds of constraints to be considered with respect to the control of the
executable tasks. In the DynamiCS architecture, the execution control of the actor
system is delegated to the coordinator role. The coordinator checks the validity of
execution constraints. Constraints can be classified according to different levels of
execution as follows:

e strategy constraints. Constraints that control the execution of actors that
model an negotiation strategy (i.e. the control structure of the underlying
algorithm).

e agent constraints. Constraints that reflect the inner state of the agent (i.e.
checking if the agent is preparing to migrate).

e negotiation constraints. Constraints that reflect the state of a negotiation
(i.e. checking if running evaluations are still consistent with the state of an
negotiation which is determined by the respective negotiation protocol).

From the framework’s viewpoint, the negotiation constraints are certainly of
highest interest because the framework can be seen as providing the structure of
negotiation-enabled agents. Since negotiation is in most cases a very dynamic pro-
cess during which a participant has to be able to react to relevant events occurring
at any time, such as a new offer made by another participant, and since there
is generally a trade-off between computation time and quality (w.r.t. some utility
function) of computed negotiation actions (comparable to many games), it is a very
desirable feature that the algorithms underlying a concrete strategy can be inter-
rupted at any point of computation and nevertheless delivering some usable result.
In this respect, the execution model proposed here is consistent with the demand
for anytime properties (as proposed by ?) of the tasks carried out by the agent.
The central issue in anytime computing as in other resource-bounded computing
techniques is the explicit control of meta-information concerning the computational
resources.

2.3 A sample application: applying genetic algorithms to the framework

In this section, in order to demonstrate how the inherent concurrency of the pro-
posed architecture can be exploited to enhance the performance of existing negoti-
ation strategies, we will present an approach of integrating genetic algorithms into
the strategy framework. The simple genetic algorithms deployed here are based on
the work described in ® and basically function as follows:

Strategies are modeled as simple sequential threshold rules made up of offers
separated by thresholds which represent the total utility value of an offer. Offers
themselves are modeled as tuples of values corresponding to negotiable attributes
(e.g., price, quality, delivery etc.) each of which has a certain utility value (see
Figure 2).

System operation begins with building a population of random strategies for the
agent which successively takes a strategy at a time to take part in a negotiation and
calculates its payoff when the negotiation ends. After such a population has been
tested in this manner, a new one is produced by selecting the strategies with the
best payoffs and applying genetic operators such as mutation and crossover on them
to generate new ones filling the new population. When this process is iterated a
number of times using different agents to play against each other, a certain learning
effect is achieved.

With respect to the presented actor-based framework, this simple method can
be modeled as a strategy module containing the coordinator and only a single ac-

offer 1
threshold 1 threshold 2 offer 2

— —

0.9 11.10 {100 |p-m. | 0.7]1.20 |100 [P-M.

Figure 2. Numerical example of an evolution-based strategy

tor which returns the next element of the offer sequence in each atomic instruction.
However, it can easily be seen that the performance of the overall genetic algorithm
can be improved by using several actors concurrently, even when the coordinator
just successively (or randomly) takes one output of the actors to perform the ne-
gotiation. Of course, in the first round, everything is the same as with one single
actor since the offer sequences are generated randomly, but from the second round
on, the learning effects of several single strategies are accumulated.

Moreover, this method can also be enhanced by using more than one level in the
hierachy of coordinator-actor with each actor on one level being the coordinator on
the next level except for the last one. Within each level, the coordinator can then
exploit the available execution time to train the actors by performing test negotia-
tions (i.e. simulations) until a certain fitness has been reached or the available time
is over. Figure 3 illustrates this technique for two levels.

real negotiation
environment

Level 1

simulated negotiation
environment

’

2

2
H

’

2

2

Figure 3. Structure of a hierachical strategy with 2 coordinator-actor levels

Also, with respect to the anytime properties mentioned above, it can easily
be shown that such a hierachical genetic algorithm has the desired features of
interruptibility (meaning that the algorithm can be stopped at any time providing
some answer), recognizable quality (meaning the quality of an approximate result
can determined at run time) and monotonicity (meaning the quality of the result
is a nondecreasing function of time and input quality).

3 A dynamic plug-in mechanism

This section presents the basic composition technique of the framework. The mod-
ular architecture presented so far decomposes into a hierarchy of different abstrac-
tions of what a negotiating agent is supposed to do. On a coarse scale, the agent
consists of modules, which are selected and composed dynamically reflecting the
requirements of a constantly evolving environment. On a finer scale, each module
— especially the strategy module presented above — decomposes into a set of tasks,
contributing to the module’s overall goal, which can be dynamically assigned to
active objects (actors). No matter which abstraction level is considered, the need
for dynamic composition of the participating entities is evident. So how is this
dynamic composition achieved?

3.1 Basic conception of the plug-in mechanism

A very flexible way of dynamic composition is to introduce runtime relations be-
tween components that were not known at compilation time. We call this a plug-in
mechanism, because it emphasizes the notion of a plug having a well-known cou-
pling interface which establishes the relation. Defining a general plug-in mechanism
apart from the type of information that flows through this link is a powerful concept
in dynamically evolving environments. A plug-in mechanism models a cooperation
between components. It allows to declaratively specify two important concerns of
cooperation 10:

e What is going to cooperate and
o When is it going to cooperate.

Breaking this concept down to the implementation level, cooperation between
object-based software components means to establish a relation between the method
calls of these components. Two dimensions can be identified for specifying such
a relation. They basically describe whether the cooperating methods execute in
parallel or in serial and if the there is an parameter dependency to be established
between the two methods.

Object-based software components expose the information needed for this re-
lation at the public interface. Our plug-in mechanism is designed to intercept the
message flow through this interface and to forward it to the cooperating component
(i-e. the target plug). The plug-in mechanism is responsible for the forwarding of a
message sent from a source component to the target components that are registered
for the corresponding message event. This models an asymmetric relationship be-
tween components, since with respect to the message forwarding mechanism, there
are source components and target components. Even if this asymmetric relation-
ship between source and target components can be identified in principle, coding
this asymmetric relationship of two components into separate interface is a design
time issue. At runtime, however, one component can play different roles in differ-
ent cooperation scenarios. Hence, on the technical level, the plug-in mechanism
only defines pluggable components which can cooperate in any direction. Only the
cooperation pattern has to be specified explicitly. The cooperation pattern is a

declarative way to specify methods and parameters for components that cooperate.
The plug-in mechanism uses this cooperation pattern for the correct call forwarding
and conversion of parameter lists if necessary. The cooperation pattern contains
basically the data needed for the configuration of a dynamic invocation interface.
Moreover, another requirement for dynamics results from the desire to be able to
assign the plug-in capability itself (see also 2) to any component, which has not
been programmed for this purpose, at run-time. This requires that the plug-in
mechanism not only contains the logic for notification on message events, but also
the possibility to enforce the consequences of such events.

The plug-in mechanism can be decomposed into three complementary actions:
notification on message invocation, cooperation formation and dynamic invocation.
In order to enforce the runtime relation between method invocations in cooperat-
ing components, the implementation of the plug-in mechanism relies on two basic
services:

e A so-called Message Listening service which is a facility to provide notifications
of the method calls destined for a certain component.

e A service to perform dynamic invocations on components with different call
semantics (synchronous, asynchronous).

In our implementation (see also 2), these services are provided by ObjectSpace’s
Voyager Framework 4. The technical design of the message forwarding mechanism
is illustrated by Figure 4.

:MessageEvent S*[i:=1..*]
if(Cooperation.checkConstraints())
setTarget()
setSignature()
2:SrcSignature :=getSignature():String setParams()
execute()

- }
1 Event(:M Event)

- =

:GenericForwarder :Operation

{ 3:Targets:=getTargets(SrcSignature:String):Hashtable
4*:Cooperation:=getCooperation(curTarget:Object): Cooperation

Y

:CooperationSpace

Figure 4. Message Forwarding Collaboration Diagram

3.2 Applying the plug-in mechanism to actor-based strategies

The actors constituting the strategy module are just another example of object-
based components which can be asssembled by means of the plug-in mechanism. An

actor collection represents a parallel system, every actor that is instantiated inside
the module works concurrently to the other actors. The complexity of designing
a parallel actor system can be compared to the complexity of designing parallel
algorithms. In order to design actor-based strategies, one has to decide

e which tasks run in parallel.
e which synchronization constraint apply between the parallel tasks.

The synchronization constraints for the actor-based strategies are conceptually
represented by the strategy constraints (see Section 2.2). The tasks are mapped to
actors, whereas the synchronicity is achieved by the plug-in mechanism. Actors op-
erate asynchronously. The primitive operation that implements this asynchronous
behavior is the send() method. The results of any computation done by the actors
are communicated asynchronously as well.

As an example let’s assume the genetic algorithm mentioned above. The purpose
of this algorithm is to improve strategy quality over time. The data structure the
GA operates on is the strategy or a collection of strategies. The intuitive approach
of mapping different GAs to different actors can be implemented by providing
different fitness functions in order to perform different computations inside the
GA. For the sake of simplicity, let’s assume an agent starts the GA every time a
new offer arrives. The task to be performed by one actor consists of (randomly)
selecting a population, running / testing these strategies and generating a new
population of strategies by GA. The iteration of these instructions should provide
better strategies with each cycle. The collection of actors performing the GA is
controlled by the coordinator (which is itself an actor) which

e creates GA actors
e controls invocation of actor cycles

e collects results

The invocation of a new computational cycle is achieved by each actor by sending
an invocation message to itself. The control of this invocation is done by the
coordinator through the plug-in mechanism. The coordinator is plugged into the
GA actors. This means the coordinator registers for the invocation messages with
the GA actors. These message invocations are forwarded to the coordinator. The
forwarding depends on the evaluation of synchronization constraints held by the
coordinator. These constraints concern computation time or result qualilty. The
conditional dispatch of these constraints can lead to the stop of computation or
requesting the current result from the GA actor or also the creation of new actors to
improve result quality. The framework provides adapter classes for the integration
of such actor implementations. Currently the Actor Foundry package ® is being
integrated.

4 Summary and outlook

In this paper, we have presented a framework to integrate negotiation capabilities,
in particular negotiation strategies, into mobile agents dynamically. First, the

framework’s conceptual design, which is based on the concept of an actor system,
was described. Then, a corresponding plug-in mechanism providing the technical
basis to fulfill the requirements of dynamic composition and cooperation between
actors was presented.

The plug-in composition technique presented here does not match the require-
ments of the negotiation framework in an essential point yet. It does not provide a
model for integrating rule dependent cooperation between components. The plug-in
mechanism describes the what and when of an cooperation scenario. But how the
cooperation between the coupled components should take place can depend upon
events and conditions external to the cooperation itself. For instance, it can be de-
sirable in a multi-issue/multi-lateral negotiation scenario that the sum of the single
offers the agent makes to all his counterparts not exceed the total budget assigned
to the agent. Such conditions can also emerge or be discovered at run-time, i.e.
after the time of establishing a cooperation. In order to support dynamic condition
checking, a flexible way to evaluate rules dynamically is currently being developed.
This mechanism will be integrated into specialized subclasses of Cooperation, called
ConditionalCooperation.

References

1. T. Ishida, editor. Community Computing — Collaboration over Global Infor-
mation Networks. Wiley, 1998.

2. M.T. Tu, F. Griffel, M. Merz, and W. Lamersdorf. A plug-in architecture
providing dynamic negotiation capabilities for mobile agents. In K. Rothermel
and F. Hohl, editors, Proc. 2. Intl. Workshop on Mobile Agents (MA’98),
Stuttgart. Springer LNCS, 1998.

3. M.T. Tu, C. Langmann, F. Griffel, and W. Lamersdorf. Dynamische Gener-
ierung von Protokollen zur Steuerung automatisierter Verhandlungen. In Proc.
29. Jahrestagung der Gesellschaft fir Informatik (Informatik’99). Springer
LNCS, 1999. (In German).

4. ObjectSpace. Voyager. http://www.objectsapce.com/Voyager.

5. TH. Clausen. The actor foundry. http://www-
osl.cs.uiuc.edu/foundry/index.html.

6. Jim R. Oliver. On Artificial Agents for Negotiation in Electronic Commerce.
PhD thesis, The Wharton School, University of Pennsylvania, 1996.

7. G. Agha. Actors: a Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

8. S. Frglund. Coordinating Distributed Objects. An Actor-Based Approach to
Synchronization. MIT Press, 1996.

9. S. Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine,
17(3):73-83, 1996.

10. G. Agha. Abstracting interaction patterns: A programming paradigm for open
distributed systems. In E. Najm and J.-B. Stefani, editors, Formal Methods
for Open Object-based Distributed Systems. Chapmann & Hall, 1997.

