Who Watches the Watchmen?
On the Lack of Validation in NoSQL Benchmarking

Wolfram Wingerath, Steffen Friedrich, Felix Gessert, Norbert Ritter

Databases and Information Systems Group
University of Hamburg
{wingerath, friedrich, gessert, ritter } @informatik.uni-hamburg.de

Abstract: There are numerous approaches towards quantifying the performance of
NoSQL datastores with respect to dimensions that are notoriously hard to capture such
as staleness or consistency in general. Many of these approaches, though, are built on
assumptions regarding the underlying infrastructure or the test scenario and may lead
to invalid results, if those assumptions do not hold. As a consequence, in-depth know-
ledge of both the system under test and the benchmarking procedure is required to pre-
vent misleading results. In this paper, we want to make the case for more experimental
validation in NoSQL benchmarking to uncover the bounds of existing benchmarking
approaches.

1 Introduction

Relational databases (SQL databases) were once considered to be the one solution for all
data storage and management problems. Basically, they all share the same query language
and have very similar properties and performance characteristics. Everyone has a rather
clear picture of what a relational database can do and what the implications of the different
ACID flavours are (e.g. in terms of possible anomalies). Since many performance char-
acteristics of SQL databases are dictated by their design, a reasonable performance eval-
uation of different SQL databases can be conducted by comparing their throughput and
request latencies under a given workload for all supported ACID isolation levels. In con-
trast to the rather uniform SQL landscape, though, many different architectures with very
different properties and performance characteristics are subsumed under the term NoSQL.
In 2010, Yahoo! published the Yahoo! Cloud Serving Benchmark (YCSB) [CST10] as the
first noteworthy attempt at a benchmark across different NoSQL systems.! However, the
YCSB only captures raw performance in terms of request throughput and latency under
simple CRUD operation mixes (insert, read/scan, update, delete) and neglects all other
criteria that describe the performance of distributed database systems. While measur-
ing throughput and latency may have been sufficient to support a conclusive performance
comparison between SQL databases, it is by far not enough to do the same in the field
of NoSQL databases. During normal (i.e. fault-free) operation, throughput and latency
are key to every NoSQL database, but the degree to which data are consistent (are there

ISeveral benchmarks had already been available before YCSB, but they were mostly built for performance
verification throughout development and were not widely used to compare different systems.



stale reads? How stale are they?) and whether as well as in which scope transactions are
available (single-key? Multi-key? Only across keys in the same data partitions?) cannot
be ignored. Unlike traditional relational databases, many NoSQL systems are explicitly
designed to withstand and even automatically recover from single-node outages, different
kinds of network partitions or other failures that are guaranteed to happen in a distributed
environment. Therefore, information on the impact that these anomalies have on con-
sistency, durability, read and write availability or more generally request throughput and
latency are crucial for evaluating NoSQL database system performance. In [FW ' 14], we
already surveyed current efforts on the quantification of these performance characteristics
(and staleness in particular) which are notoriously hard to capture and we concluded that
many approaches rely on implicit assumptions that do not hold in practice, e.g. perfect
clock synchronisation between different physical machines or low network communica-
tion delays. However, it is hard to evaluate the severity of such conceptual flaws from
theory alone: just like a flawless benchmarking concept may lead to wrong measurements
when implemented badly, a measurement scheme that allows potentially unbounded im-
precision may yield useful results in practice.

In this paper, we argue that not only the concept behind a measurement scheme should be
validated in order to explore the boundaries within which valid results can be obtained, but
the actual implementation should be validated as well. In particular, we make the following
contributions: we motivate practical benchmarking validation by illustrating weaknesses
in existing NoSQL benchmarks (Section 2) and describe SickStore (Section 3), a single-
node datastore we developed for validation that behaves like a distributed system and can
simulate anomalies such as staleness. As a demonstration of SickStore’s usefulness, we
further conduct an experimental validation of staleness values obtained with YCSB++
(Section 4). Section 5 concludes the paper.

2 Why Validate Benchmarking Tools?

There are several approaches towards benchmarking staleness in distributed database sys-
tems that conduct their measurements in such a way that there are no guarantees on preci-
sion. In [FWT14], we described the ideas behind a number of database benchmarks and
pointed out several weak spots in their design, concentrating on work related to staleness
measurements. In this section, we first present our notion of staleness and then provide
more detailed insights into the two staleness benchmarks that are most sophisticated in our
opinion. Our goal is to convince the reader that benchmark validation is important as there
are various possible sources of arbitrary imprecision, for example clock drift, network la-
tency or mere software faults.

What is Staleness, Anyway? A stale read is a read operation that returns an outdated ob-
ject version. When a data object is written to an asynchronously replicated datastore, there
is a certain timeframe during which the different replicas of this data item diverge, because
the write is visible on some, but not all replicas. This timeframe represents the actual data-
centric staleness window, because stale reads of the written object may be served as long
as the write operation has not been applied to all replicas. Data-centric staleness cannot
be measured easily, though, because it requires knowledge of the internal system state and
therefore cannot be implemented in a system-agnostic and generic way. Furthermore, the



staleness window that is actually observable on the client-side during a given workload
might be sufficient for many use cases or even more relevant than the exact point in time
at which data in the system become consistent. Therefore, virtually all existing staleness
benchmarks measure the client-centric staleness, i.e. they try to capture how long after a
write operation the system keeps serving stale data.

Bermbach et al. Staleness Measurement. Bermbach et al. [BT14] create a global log file
from multiple distributed servers under the assumption of perfect clock synchronisation.
As illustrated in Figure 1, the basic setup comprises the datastore under test, one server that
runs a common YCSB workload and one writer and several readers for the staleness mea-
surement.” To determine the staleness window of a write operation, the writer periodically
writes its local time and a version number to the datastore, while the readers repeatedly
poll the written data item and log their own local time for each received value. The stale-
ness window can eventually be computed as the difference between the timestamp of the
last stale read (local time of a reader) and the timestamp of the initial write (local time
of the writer). The timestamps that are used for the computation of the staleness window
are highlighted in the illustration: the writer updates the version number at timestamp 3
and the two readers do not see the updated version before timestamps 8 (Reader 1) and 7
(Reader 2), so that the staleness window is computed as 8 — 3 = 5. Obviously, this proce-
dure only delivers an approximation of the staleness window whose precision depends on
how well the local clocks of the writer and the readers are synchronised. For example, only
the last read timestamp of Reader 1 is used for the computation, since only the last stale
read is relevant which (under the assumption of synchronised local clocks) comes from
Reader 1. Accordingly, if the writer and Reader 1 are perfectly in sync, while Reader 2
lags 10 time units behind, only the last stale read from Reader 2 taken into account and the
measured staleness window becomes 16 — 3 = 13. If the writer’s local clock lags behind
or if one of the reader’s local clock is significantly faster, it may even become negative.
Clock drift has already been identified as a possible cause for dubious experimental results

staleness: 8 — 3

Figure 1: The basic set up of the staleness benchmark by Bermbach et al. [BT14].

by Bermbach et al. themselves [BZS14]. But even in a well-synchronised environment,
this approach still does not produce exact results, because the timestamp that is written

2Writer and reader are placed on separate machines for several reasons: first, they might experience reduced
or no staleness at all when placed on the same machine, e.g. when their requests are routed to the same replicas.
Second, a single machine might not be able to saturate the system under test. Third, real-life clients are also
(geographically) distributed.



to the datastore represents the point in time directly before the write request was sent,
whereas the point in time directly after the write request was acknowledged is when data
actually become stale. Depending on the required precision, the network latency and the
time the system needs to process the write request, the staleness measurement may or may
not be a reasonable approximation of the actual staleness window. Apart from that, the
read/write ratio of the YCSB workload may be significantly disrupted by the additional
reads and writes during the staleness measurement.

YCSB++. Another example of a staleness benchmark that gives rise to potentially un-
bounded measurement error® is the YCSB++ [PP*11] which, in contrast to the approach
by Bermbach et al., does not rely on clock synchronisation, but instead works with notifica-
tion between writer and reader®. In principle, the writer inserts> new objects and enqueues
their keys to a queue administered by a ZooKeeper service on a dedicated server, while
the reader repeatedly dequeues, tries to read the corresponding values and eventually ap-
proximates the staleness window as the lag between the initial receipt of a key and the
retrieval of the inserted value. Figure 2 shows the individual steps of a YCSB++ staleness
measurement with one writer and one reader in a simplified way. The individual steps of
the experiment are demarcated as 7,, where ¢ represents the order in which all steps hap-
pen and n represents where (at which node) each step happens (r for reader, w for writer,
s for store). For illustration purposes, we use these demarcations as though they were
(global) timestamps if appropriate. Further, we assume write operations to be applied at
the moment of acknowledgement and we assume read operations to take place instanta-
neously when they are received. Initially, both writer and reader are given the signal to
start the experiment by ZooKeeper (received at 1,, and 1, respectively). The reader tries
to dequeue (2,.) the first element of the ZooKeeper queue, but has to wait, since the queue
is empty. Meanwhile, the writer issues (3,,) the request to insert object x. The datastore
receives the request (4;), processes it and finally sends (55) the acknowledgement back to
the writer. When the writer has received the acknowledgement (6,,) and enqueues (7,,) x
to the ZooKeeper queue. The reader is notified of the new key in the queue, dequeues it
and receives it (8,). Object x. According to the basic idea as we also described it in our
survey [FW™14], the reader repeatedly requests object z, until x is actually returned. In
more detail, though, the reader communicates with the ZooKeeper service after every un-
successful read attempt: After the first read request (issued at 9,., received at 10,) returns
null (sent back at 11, received at 12,.), the reader pushes z back to the ZooKeeper queue,
removes the next item in the queue and continues the procedure with this item. When
the reader eventually removes x again from the queue (13,), it starts another read attempt
(issued at 14, received at 15, answered at 16,) and finally receives (17,.) the inserted
object z. The staleness window is then approximated it as 17, — 8, i.e. the time between
the reader receiving a key and the reader successfully retrieving the corresponding value.
The data-centric staleness window starts at 5, and ends somewhere after 10, and before
15;. The client-centric staleness window is 105 — b, but it cannot be computed, because

3Qur initial understanding of the YCSB-++ approach was that it provided a lower bound for the staleness
window as we reported in our survey on NoSQL OLTP benchmarking [FW114]. We have to admit, though,
that that this was not the case and that YCSB++ does not provide any bounds on precision during staleness
measurements.

“4In the YCSB++ paper, writer and reader are referred to as producer and consumer.

5Note that staleness measurement are only possible for inserts and not for updates.



Zookeeper

dequeue, push back

Figure 2: The basic experimental setup for staleness measurement in YCSB++.

all timestamps are taken from client machines and therefore neither 105 nor 5 are avail-
able. Further, the difference between 105 and 55 would also be distorted by clock drift,
even if they were available, because the insert and the read request are not necessarily
processed on the same datastore node: if the exact same machine that acknowledged the
insert also responded to the read request, most systems would not exhibit any staleness
whatsoever, since = would be visible directly after the acknowledgement. Hence, in case
of an actual stale read, the insert and read request may be assumed to have been processed
by two distinct machines that do not share the same local clock. But even though the exact
client-centric staleness window cannot be obtained, it is possible to completely rule out
the possibility of clock drift by using only timestamps from either the writer or the reader
to approximate the staleness window: since 55 < 8, < 9, < 104, a lower bound for the
staleness window can be computed as 9, — 8,..° Similarly, an upper bound could be com-
puted, if the reader reported back to the writer after having read x. Assuming the writer
received such a notification from the reader at timestamp 18,,, an upper bound could be
computed as 18,, — 3,,, since 3,, < b5 < 105 < 18, holds. Since the staleness window
measured by YCSB++ does not contain the actual staleness window (105 — 55) and is not
contained in it, it is neither a lower nor an upper bound: depending on the network delay
and the time that an item remains in the ZooKeeper queue, there may be significant lag
between the writer enqueueing the key and the reader initially receiving it (read-after-
write lag) as well as between the reader pushing the key back into the queue after an
unsuccessful read attempt and receiving it again. The former kind of lag may prevent
the reader from observing any staleness, simply because it is not notified soon enough,
while the latter may lead to arbitrarily large staleness measurements, because the reader
takes too long to start another read attempt. YCSB++ avoids imprecision through clock
drift, but allows additional delays through network commutation and the use of a queue
which might not be delay between the reader and the ZooKeeper coordination service. In
addition and similar to the experiments by Bermbach et al., it is unclear in what way the
staleness measurements influence the read/write ratio of the YCSB workload that is run
by the writer.

%Note that this lower bound can be very close to zero, if the read is successful at first or second attempt. If
more than two read attempts are required, though, the lower bound can assume values significantly greater than
zero.



3 Designing for Single-Node Inconsistency: SickStore

The major difficulty in validating existing staleness benchmarks is that none of the time-
stamps that would be required to determine server-side (data-centric) staleness are actually
available for measurement, either because they would require internal system knowledge
or because the database system itself is distributed and therefore subject to clock drift.
In order to have a gold standard that can be used to evaluate the quality of staleness
benchmarking results, we developed a single-node inconsistent key-value store: Sick-
Store. SickStore is a single-node key-value store that is able to simulate the behaviour of
a distributed key-value store. It is thus able to provide the same anomalies as a distributed
system, but at the same time consistent knowledge about the system state at any point in
time. Its main building blocks are the internal backend that holds all data, several virtual
server nodes that listen on different ports of the same machine and a processing layer in
between that does the actual request processing and decides what data can be served from
what server node. Figure 3 shows an example where one write request and two read re-

1. return

1 -

. 17. ret

1. write x:{val : Bob}\ 6. read x % Alice 19 . \ reglgé]
. read _\’\

SickStore

B: 3,
C: 2 }

Figure 3: The basic architecture of SickStore: the different virtual server nodes accept and
reply to all requests, but they all display a certain staleness, while the central versioned
key-value store (backend) keeps track of all changes and is aware of the true system state
at any time.

quests are executed against a SickStore instance with three virtual servers A, B and C. A
write request to insert or update value “Bob” under key x arrives at timestamp 4 at server
A (1) which forwards the request including the key, the value and the write timestamp
tw = 4 to the query handler (2). The query handler requests the staleness generator to
generate a staleness window for each virtual server (3) and receives one in form of a map
that associates each server with its individual staleness window in ms. The query handler
has the backend store everything (value, write timestamp, staleness associations) under
key x (5). The backend maintains a list of all writes that have occurred under every key
in order of their arrival at the backend. The acknowledgement goes back to the server that
received the request and is then returned to the client.



Shortly thereafter at timestamp 5, a read request for = arrives at server B (6). Similar to
the request discussed above, this read request is also forwarded to the query handler to-
gether with the read timestamp ¢ = 5 and the name of the server node that received the
request (7). The query handler then directly sends these information to the backend (8)
and requests the most recent version of z that server B is allowed to serve; since the most
recent version has been written at timestamp 4, but has a staleness window of 3 associated
with server B, it is not visible for server B before timestamp 4 4+ 3 = 7. Since the current
read timestamp is 5, the query handler receives (9) the value of the most recent version that
actually is visible for server B, in this example the value “Alice”, and hands it to server B
(10) which then returns it to the client (11). Another read request for the same key arrives
at server C at timestamp 7 (12) and is again forwarded to the query handler (13) together
with the read timestamp ¢r = 7 and the name of the server C. Again, the query handler
requests the most recent visible version, but actually receives the most recent version this
time, because the read request arrived at timestamp 7 and the C-associated staleness win-
dow is 2 (i.e. because 7 > 4 + 2). Naturally, the value is eventually returned to the client.
Since all SickStore components have the same local clock time and since there is virtually
no communication delay between them, the processing layer can precisely implement a
pre-defined visibility delay for each virtual server and thus make sure the data are served
exactly as stale as they are supposed to be served. Further, the modular design of SickStore
allows to interchange different implementations of the staleness generator, so that our con-
stant staleness generator can easily be replaced by a more sophisticated one in the future.
Depending on what criteria are used to determine the staleness that is exhibited, arbitrary
replication or sharding strategies in arbitrary network topologies can thus be simulated.

4 Experimentally Validating Latency Measurements With YCSB++

The benchmarks discussed in Section 2 (and presumably many more that we do not dis-
cuss here) bear the potential to display arbitrary measurement error without the user notic-
ing. As a consequence, their precision and actual meaningfulness are hard to evaluate by
merely speculating about the impact of workload disruption, clock drift (Bermbach et al.),
communication delay (YCSB++) or other possible ramifications in a given experimental
setup. We claim that a performance evaluation using these benchmarks is not possible
without experimental evidence regarding whether, under what circumstances and to what
extent these benchmarks are actually useful. In [BZS14, p. 42], Bermbach et al. already
concluded that clock drift during their measurements has severe implications on the mea-
sured staleness and thus can easily lead to misleading results. In this section, we show that
YCSB++ is also prone to severe measurement errors, even though clock drift causes none
of them.

Experimental Setup. All experiments were executed in a virtualised environment hosted
on Xeon servers with 2.1 GHz 6-core CPUs: the YCSB++ writer and reader each had
two VCPUs and 4 GB of memory, the ZooKeeper service and SickStore each had a sin-
gle VCPU and 2 GB and 30 GB of memory, respectively. In principle, the YCSB writer
is capable of executing an ordinary YCSB workload against the datastore under test and
submits only a small fraction of the insert operations (1% by default) to ZooKeeper for
staleness measurements. To keep the fraction scalable in the range between 0% and 100%,



share

we decided to have the YCSB++ writer run an insert-only workload and thus avoid any op-
erations whose staleness could not be measured.” To make sure that neither SickStore nor
the YCSB++ writer would not become bottlenecks during the experiments, we determined
their maximal throughput, first: our SickStore deployment achieved consistently more than
3000 operations per second under insert-only, read-only and mixed insert-read (50/50)
workloads using single-threaded vanilla YCSB and also under an insert-only workload
using a single-threaded YCSB++ writer with staleness measurement disabled®. To fur-
ther prevent any dependencies between individual experiments, we shutdown SickStore’s
JVM after each experiment and started a new instance for each experiment. We configured
SickStore to exhibit constant staleness of exactly 1000 ms.

""" YOSB4+ fraction 0.01

- )
read-after-write lag

" SickStore fraction 0.01
'* YCSBA4-+ fraction 0.01

- ‘
read-after-write lag

data-centric staleness

0.10

=2 o Q S Q S S
Q Q Q Q S S S S
N S S N N S N N
© S N N N S N >
staleness (ms) 1 staleness (ms)

(a) The YCSB++ staleness measurements do not (b) The measured staleness distribution has a
reflect the actual data-centric well. long tail and many outliers.

Figure 4: Target throughput 500 ops/sec, fraction 1%, 1000 ms data-centric staleness.

Measuring Staleness. We started our first experiment with a fraction of 1% as proposed in
the YCSB++ paper and we only used a target throughput of 500 inserts per second which
translated to 5 inserts per second with subsequent staleness measurement. Both writer
and reader were single-threaded the experiment stopped after 200 staleness measurement.
The histogram in Subfigure 4b illustrates the frequency of actual client-observable stale-
ness (dotted line), the staleness windows measured by YCSB++ (dashed line), the con-
stant data-centric staleness (dotted line) and the read-after-write lag measured at SickStore
(solid line), i.e. the time between the initial write and the last (successful) read operation.
Since YCSB++ tries to measure the actual data-centric staleness as an approximation of
the read-after-write lag and since the actual data-centric staleness window exhibited by
SickStore was exactly 1000 ms, one would expect the measured staleness windows and
also the read-after-write lag to be close to 1.000 ms. As illustrated in the plot, though, the
experimental results did not correspond to our expectations at all. First and foremost, less
than 25% of all measured staleness values (47 out of 200) are between 900 and 1000 ms,
4 operations were not observed as stale at all and more than half of all operations (119)
displayed 1900 ms of staleness or more.

The histogram of all values in Subfigure 4b shows that some staleness values reported by

7 As described in Section 2, YCSB++ Only measures staleness values for inserts and not for update operations.
8We set the fraction of staleness measurements to 0, but also started a single-threaded consumer and a
ZooKeeper and had them perform their usual barrier synchronisation.



YCSB++ exceed the actually exhibited staleness by more than the 20-fold. This behaviour
can be explained with the frequency distribution of the read-after-write lag which appears
to dominate most staleness measurements. Since the read-after-write lag represents the
time that passes between the initial write and successful read, it also indicates the time that
passes between the last unsuccessful read and the final successful read, because any read
that is received by SickStore more than 1000 ms after the initial write would automatically
result in a success and thus would finalise the read-after-write lag for that value. There-
fore, the time that lies between the last two read operations of a measurement can at most
be 1000 ms smaller than the read-after-write lag: if the first read occurs directly after the
initial write, the read-after-write lag and the measured staleness are almost equal, whereas
a delay between the initial write and the first read that is greater than the data-centric stale-
ness window would result in a zero-staleness measurement, because the first read would be
successful. Since only few zero-staleness measurements occurred in our first experiment,
the great number of large read-after-write lag values can only mean that there were many
staleness measurements where the first read was executed within the first second after the
initial write (resulting in an unsuccessful read), so that the reader had to push back the
corresponding key to ZooKeeper, but then did not receive it again for a substantial amount
of time (tens of seconds in some cases).

Our logs revealed that the YCSB++ reader actually achieved more than 320 reads per
second, irrespective of the configured fraction, but also that it read the exact same keys
dozens of times in succession instead of cycling through them as expected. Reviewing
the YCSB++ code, we found out that the reader does not actually dequeue items from
ZooKeeper, but instead uses the first item from the list that is returned by calling the
getChildren method; according to our experiments (and the ZooKeeper documenta-
tion for various releases), though, this procedure does not guarantee the keys to be returned
in any specific order which explains why the reader repeatedly dequeues the exact same
keys. We verified through further experiments that the usefulness deteriorates even further
when the fraction is increased: with the fraction set to 50%, virtually all staleness values
are either way too large or zero. We managed to achieve a reasonable staleness approxima-
tion with YCSB++ at 1 staleness measurement per second (see Figure 5). However, this
setting is not reliable: in an experiment with an increased data-centric staleness of 5000
ms demonstrate, the measured values were wildly scattered again, peakmg at over 180 s.
Summary Using SickStore, we were able 1

to uncover substantial imprecision in an
experimental setup that would otherwise 0.75
have been hard to detect. In particular,
we could establish that the YCSB++ stale- -
ness measurement corresponds to neither
the actual data-centric staleness nor to the 025
real distribution of the staleness that is per-
ceived by the reader. Further, we found S
out that YCSB++ provides barely any con-

trol over the degree of workload disrup-

tion, even though this is advertised in the Figure 5: Target 1 ops/sec, fraction 100%: it
YCSB++ paper: the reader always runs is possible to achieve reasonable results.

* SickStore fraction 1.0
"“YCSB++ fraction 1.0
-
read-after-write lag

data-centric staleness

share
f=1
wt

N N Q N
S Ff
Kl

S
staleness (ms)



unthrottled, irrespective of the configured fraction. The most severe problem for stale-
ness measurement is that the YCSB++ reader mostly enqueues and dequeues the exact
same keys in direct succession, so that some keys are not requested at all for tens of sec-
onds which leads to significant distortions. Depending on the number of keys stored at
ZooKeeper as well as the actually exhibited staleness, the resulting overhead may com-
pletely dominate the experimental results as it can be orders of magnitudes greater than
the value that should actually be measured.

5 Conclusion and Open Challenges

The great variety of feature sets that are available on the datastore market also brings con-
fusion with respect to what guarantees a datastore can actually provide, particularly with
respect to performance characteristics that are hard to quantify objectively. To enable an
evaluation of the different benchmarks that try to address this issue, we presented our pro-
totypical database for validation, SickStore, that mimics the behaviour of a distributed a
database system and simulates anomalies, but runs on a single server, so that all events
can be associated to global timestamps without any clock drift. We described SickStore’s
architecture and its main features. In our experimental validation, we demonstrated how
SickStore can be used to doublecheck staleness measurement results by comparing Sick-
Store’s internal logs to the YCSB++ measurements. Thus, we uncovered that YCSB++ is
likely to produce misleading staleness values without the user noticing.

In order to enable validation of other measurements apart from staleness benchmarks, we
are currently implementing freely configurable transactional anomalies as well as request
latency and read/write throughput into SickStore. Further, we are building more sophis-
ticated staleness generators that simulate different replication or sharding strategies and
allow a more fine-grained tuning of staleness between the virtual SickStore server nodes.

References

[BT14] David Bermbach and Stefan Tai. Benchmarking Eventual Consistency: Lessons Learned
from Long-Term Experimental Studies. In Proceedings of the 2nd IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 2014. Best Paper Runner Up Award.

[BZS14] David Bermbach, Liang Zhao, and Sherif Sakr. Towards Comprehensive Measurement of
Consistency Guarantees for Cloud-Hosted Data Storage Services. In Performance Char-
acterization and Benchmarking, volume 8391 of Lecture Notes in Computer Science,
pages 32—47. Springer International Publishing, 2014.

[CST10] Brian F. Cooper, Adam Silberstein, et al. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing, SoCC 10,
pages 143-154. ACM, 2010.

[FWT14] Steffen Friedrich, Wolfram Wingerath, et al. NoSQL OLTP Benchmarking: A Survey.
In Informatik 2014, volume 232 of Lecture Notes in Informatics (LNI), pages 693-704.
Gesellschaft fiir Informatik (GI), 2014.

[PPT11] Swapnil Patil, Milo Polte, et al. YCSB++: benchmarking and performance debugging
advanced features in scalable table stores. In Proceedings of the 2nd ACM Symposium on
Cloud Computing, SOCC 11, pages 9:1-9:14. ACM, 2011.



