
NoSQL OLTP Benchmarking: A Survey

Steffen Friedrich, Wolfram Wingerath, Felix Gessert, Norbert Ritter

Databases and Information Systems Group

University of Hamburg

{friedrich, wingerath, gessert, ritter}@informatik.uni-hamburg.de

Abstract: In recent years, various distributed NoSQL datastores have been devel-
oped that offer horizontal scalability and higher availability than traditional relational
databases, but fewer querying options and only reduced consistency guarantees. The
diversity of the design space makes it difficult to understand the performance implica-
tions of individual system designs. Existing benchmarking tools measure some rele-
vant aspects, but do not capture all of them. In this paper, we give an overview of the
state-of-the-art in NoSQL OLTP benchmarking, identify missing features as well as
open challenges and point towards possible solutions.

1 Introduction

Traditional relational database management systems (RDBMSs) were designed to be the

one solution to all data management and storage problems and thus they all share a broad

foundation: They provide the full SQL spectrum (including joins) and are not highly avail-

able as they follow strongly consistent ACID semantics. Hence, these systems can be com-

pared reasonably well by benchmarks (e.g. TPC) that quantify their performance solely

along dimensions like throughput and request latency under realistic OLTP workload pat-

terns.

During the last decade, however, a myriad of distributed NoSQL datastores have emerged

that promise to fill the growing gap between what highly distributed (web) applications

require and what traditional RDBMSs can provide by sacrificing consistency guarantees

and querying options (hence the name) in favour of high availability and scalability. The

design space is vast and the dependencies between desirable properties are complex. Even

though high-level abstractions such as the CAP Theorem [Bre00, GL02] or the PACELC

model [Aba12] can help to understand the basic trade-offs that are involved, the perfor-

mance implications of individual system designs are often not obvious, so that the optimal

data storage solution for an application cannot be chosen by simply comparing candidate

specifications. Representative benchmarking results are not available, though, as current

approaches do not capture all the relevant aspects and employ operation mixes as work-

loads that only loosely correspond to real-world scenarios.

In this paper, we survey the in our opinion most relevant NoSQL OLTP benchmarks, point

out missing features, discuss open challenges and possible ways to approach them.

693



In Section 2, we survey current efforts in evaluating NoSQL database systems according

to request latency and throughput, availability and consistency in its various forms. We

briefly present a novel approach to benchmarking consistency in Section 3 and give a

summary of open challenges and a conclusion in Section 4.

2 Comparing Distributed Datastores

Data in distributed datastores are spread (sharded) across several nodes (servers). In order

to prevent data loss and to preserve availability in the presence of errors, data are also

replicated across several nodes. But sharding and replication have severe implications on

performance: While replication can increase read performance as the same data items are

available on several machines, it can also increase write latency (synchronous replication)

or give rise to stale reads or conflicting writes (asynchronous replication). Furthermore,

sharding introduces an overhead to operations that span data items on different nodes;

operations such as joins over datasets on different nodes become infeasible and global in-

variants are hard to maintain. As no single system can achieve all desirable properties at

once, each NoSQL datastore is optimised for a specific property set.

In the remainder of this section, we discuss different dimensions along which NoSQL

datastores can be evaluated and compared. First, we cover the most basic form of bench-

marking that translates to measuring raw performance in terms of request latency and

operational throughput, concentrating on YCSB as the most popular and widely accepted

benchmarking framework in the field of NoSQL OLTP benchmarking. We then consider

related work on the quantification of availability. Finally, we discuss different notions of

consistency in distributed databases and examine approaches towards their measurement.

2.1 Request Latency and Operational Throughput

The de facto standard for NoSQL OLTP benchmarking is the Yahoo Cloud Serving Bench-

mark (YCSB) framework which was published in 2010 [CST+10]. Primarily targeting

key-value store functionality, YCSB is a highly generic general-purpose OLTP benchmark

that can easily be extended to support additional databases as it only requires the imple-

mentation of a simple CRUD interface (read, scan, insert, update, delete). In contrast to

other benchmarks such as TPC-C that evaluate system performance under realistic work-

loads, YCSB is built around the idea of examining different characteristics of a datastore

using distinct architectural tiers: A tested database is stressed with CRUD operations by

the YCSB Client to measure throughput, operations per second and request latency under

high load (performance tier). YCSB workloads do not model real-world applications, but

are customisable mixes of read/write operations that represent entire application classes:

Random distributions1 determine which operations are performed, which records are read/

written, how frequently they are read/written and other workload details. The records that

are read and written consist of a number of (random) ASCII string attributes; the number

1YCSB supports uniform, multinomial and variants of Zipfian distributions.

694



of columns and the size of each value can be configured. Scalability and elasticity can be

quantified by measuring the increase in performance as machines are added to the system

(scalability tier).

The generic workloads and the simple CRUD interface make YCSB suitable to explore

general trade-offs in a wide class of storage systems. But due to this simplicity, YCSB

does not account for functionality beyond that of simple key-value stores and abstracts

from many differences such as data models. Seeing that many NoSQL systems actually are

highly specialised for particular distributed large-scale applications, a performance evalu-

ation for specific real-world tasks appears desirable. Furthermore, the single-node client

poses a scalability problem for benchmarking in large-scale environments as it cannot sat-

urate large distributed database systems under test. Additional tiers for characteristics like

availability, replication or fault tolerance were proposed in the original contribution, but

not implemented in YCSB.

BG [BG13] is another benchmarking framework which, in contrast to YCSB, is still ac-

tively developed. It models actions in a social networking application and therefore pro-

vides a richer conceptual model and requires the implementation of a more complex in-

terface than YCSB for operations such as listing all friends of a given user or return-

ing the top-k posts on a user’s profile. In addition to throughput and latency measure-

ments as in YCSB, BG supports SLA (service level agreement) conformance checks: The

Social Action Rating (SoAR) represents the highest throughput that can be sustained with-

out violating a given SLA.

2.2 Availability

A partition-tolerant available system can always accept read and write requests by clients

and will eventually return a meaningful response, i.e. not an error message. However,

anomalies such as network partitions or server crashes occur on a daily basis in large

distributed environments and therefore data have to be replicated across different failure

domains, so that operation can be sustained in spite of such anomalies. Since availability is

of paramount importance for many applications, information on the performance impact of

different replication strategies during normal operation or in failure scenarios are valuable.

The Under Pressure Benchmark (UPB) [FMdA+13] aims at quantifying and comparing

the availability of different distributed database systems by measuring the operational

throughput under three different configurations: with replication turned off and no fail-

ing nodes, with replication turned on and no failing nodes and with replication turned on

in the face of node failures. In every setting, the system under test is given some time to

stabilise (warming period) before measurements are made. In order to generate a heavier

workload than is possible with a single client, UPB uses several independent YCSB clients

in parallel and aggregates the results.

While it does manage to quantify the impact of replication on steady-state performance

during normal operation and after node failures, the UPB does not quantify availability

well, in our opinion, because the measurements do not reflect performance problems di-

rectly after node failure.

695



In a 2013 evaluation, Engber et al. [NE13, Eng13] measure the immediate impact of node

failures on operational throughput and therefore availability. Similarly to the UPB, they

aggregate the results of several independent YCSB clients after a short warming period.

As they induce node failure during measurement, the authors are able to observe real-time

behaviour such as downtime during failover, performance drops caused by load balancing

and, more generally, database performance before the system stabilises again.

2.3 Consistency

The CAP Theorem advertises that strong consistency is unachievable for a highly avail-

able system in the face of a partition, the underlying notion of strong consistency being

linearisability which translates to the guarantee that reads and writes are always executed

atomically and are sequentially consistent (linearisable [HW90]). In simple words, strong

consistency guarantees that all clients have the same view on the data at all times. Some

systems sacrifice availability to remain strongly consistent while others employ available,

but only eventually consistent models: In an eventually consistent (EC) system, all repli-

cas of a data item are guaranteed to converge in the absence of updates and partitions, i.e.

they will reach an identical state at some point in the future. The order in which individ-

ual writes are applied, though, is arbitrary and dependent writes may become visible out

of order. However, as demonstrated by current research [LFK+11, BGH+13], it is pos-

sible to simultaneously achieve EC and causal consistency (CC) at the cost of increased

staleness and additional complexity in comparison to plain EC. Informally, any two oper-

ations on a data item in a CC system are executed in the order they are received, if one of

them (directly or transitively) causally depends on the other.2 EC and CC are data-centric

consistency models that have their focus on the internal state of the storage system and

synchronisation between replicas, whereas inconsistencies that can be observed by clients

are captured by client-centric consistency models: Monotonic Read Consistency (MRC)

mandates that a client that has observed version n of a data item will never observe this

particular data item in a version less than n. Monotonic Writes Consistency (MWC) re-

quires that two updates issued by the same client are executed in the order that they arrive

at the storage system and Write Follows Read Consistency (WFRC)3 guarantees that a

write operation following a read of object x in version n is never applied to replicas with

versions of x less than n. Under Read Your Writes Consistency (RYWC), a client that has

written version n of a data item will never observe this particular data item in a version

less than n.

While strongly consistent systems display no inconsistencies with respect to neither order-

ing nor staleness and therefore provide all of the above-mentioned client-centric guaran-

tees, many EC systems provide none4. Thus, it is hard to determine whether the advantages

of using an EC datastore outweigh the disadvantages of potentially stale or conflicting data

2An operation o1 is directly causally dependent on another operation o2, if (1) the storage system receives o1

before o2 and both operations are issued by the same client or if (2) o1 is an update and o2 is a read that returns

the result of o1.
3Example: WFRC guarantees that a reply to a posting can never be observed before the initial posting.
4MRC, MWC and WFRC can be provided in an eventually consistent system.

696



in a particular application scenario.

In the following, we discuss ways to compare different distributed databases with respect

to the ordering and staleness properties they exhibit. We also cover the notion of trans-

actional consistency known from ACID databases which differs from distributed replica

consistency and efforts in verifying consistency after system partitions.

2.3.1 Staleness

Given any highly available EC system, it is impossible to provide strict bounds on how

strongly the different replicas diverge or how long it will take them to reach agreement

once they are out of sync. However, various efforts have been made to predict or measure

staleness for different systems.

With the Probabilistically Bounded Staleness (PBS) prediction model, Bailis et al.

[BVF+12] estimate the expected bounds on staleness in Dynamo-style datastores with

respect to both versions and wall clock time on the basis of write propagation and read

messaging delays. They introduce the two metrics t-visibility for the probability of ob-

serving a write t time units after it returned and k-staleness for the probability of reading

one of the last k versions of a data item and then further combine them both in 〈k, t〉-
staleness consistency to encapsulate the probability of reading one of the k latest versions

of a value, given the latest value was written at least t time units ago.

On the downside, PBS does not treat the system as a black box, but instead requires inter-

nal knowledge of the storage system (delays) and abstracts from implementation details; as

anti-entropy protocols such as read-repair or the use of Merkle trees are not taken into ac-

count, actually observed staleness may be less severe than predicted by PBS. Furthermore,

it is only applicable to a specific class of distributed (Dynamo-style) databases.

In [WFZ+11], Wada et al. describe an experimental setup to measure time-based staleness

in different cloud databases. The authors describe different experimental configurations

that employ one reader and one writer which are hosted on the same virtual machine (VM),

on different VMs in the same datacenter and on VMs in different datacenters: The writer

periodically writes its local time to a particular data item and the reader repeatedly retrieves

this item; on discovery of a new timestamp, the reader computes the observed staleness

window as the difference between its own local time and the observed timestamp.

As the authors do not mention whether or how the local clocks of writer and reader are

synchronised, we assume there to be no synchronisation. Under this assumption, all ex-

periments where writer and reader do not share the same machine are profoundly flawed,

because they might contain arbitrary measurement errors. The significance of the remain-

ing experiments appears limited as well since writer and reader might experience reduced

or no staleness at all, e.g. because they are routed to the same replicas.

To address this issue, Bermbach et al. [BT11, BT14] propose an extension to the approach

of Wada et al. that employs multiple readers: One writer periodically writes the current

local timestamp and a version number, while each of several readers repeatedly polls the

storage system and logs its local read timestamp, the observed write timestamp and the

observed version number. In a subsequent analysis of all reader logs, t-visibility and k-

697



staleness are approximated under the assumption of perfect synchronisation of all client

clocks. In addition to their consistency measurement component, they also run a YCSB

workload with one YCSB client to saturate the storage system.

Similar to Wada et al., Bermbach et al. also rely on clock synchronisation through the

cloud provider and thus significantly diminish the reliability of their results: As they as-

sess themselves [BZS14], using local timestamps from different readers with potentially

drifting clocks may lead to dubious results.

In contrast to the studies discussed above, Golab and Rahman et al. [RGA+12, GLS11]

from HP Labs aim to measure the observed consistency under a given workload instead

of designing a workload to derive consistency properties. They criticise that other mea-

surement techniques introduce artificial operations (repeated reads) that tend to disrupt the

workload, stress the system under test considerably and thus may distort the results. They

formally define ∆-atomicity as a time-based consistency property that informally requires

a read operation to return a value that is at most ∆ time units stale. In other words, a system

provides ∆-atomicity, if every value becomes visible during the first ∆ time units after5

the acknowledgement of its write. Figure 1 illustrates the idea of how to compute the value

∆ for a given database history: Several read and write operations are executed on data item

x over time where the entirety of all operations regarding version i of x is referred to as

zone Zi. For each pair of zones that belong to the same data item and overlap in terms

of time, a value χ is computed that corresponds to the width of the respective staleness

windows. ∆ is the maximum of all χ values, i.e. the largest observed staleness window.

The goal of the authors’ experiments is to quantify the consistency that is provided by a

distributed datastore in terms of ∆-atomicity. The required information are collected by

extended YCSB clients that log timing information for each operation.

Even though the workload design differs from the approaches discussed before, the ac-

tual measurements are very similar. While the precision of the described approach also

depends on clock synchronisation, the authors state the error margin to be “around 1ms”.

As part of the SLA conformance check, BG also quantifies the amount of stale and other-

wise inconsistent data that are observed during experiments. A BG workload is executed

by several distributed clients each of which operates on a logical partition of the dataset.

Every client is aware of the initial state of the data and each update operation and therefore

stale reads can be detected through log analysis.

While the different BG clients do not interact and therefore do not require clock synchroni-

sation and do not suffer from communication delays between reader and writer, staleness

and other anomalies may not be observable in some scenarios, as both read and writer

share the same physical machine. Given that reader and writer in real-world social net-

working applications are often globally distributed, this appears as a major drawback in

terms of realism.

An approach that does not rely on clock synchronisation is implemented in YCSB++

[PPR+11] where multiple clients are coordinated via one central ZooKeeper server

[HKJ+10]. Most notably, YCSB++ measures time-based staleness with multiple clients

working together in a producer-consumer pattern as illustrated in Figure 2: Initially, the

consumer client subscribes (1.) to be notified by ZooKeeper as soon as a specific object is

5For ∆ > 0, ∆-atomicity is strictly weaker than atomicity which demands immediate visibility for any write.

698



Figure 1: Example computation of ∆

as the maximum of all χ values simi-
lar to [RGA+12, Figure 1]. Note that
there is no χ value between Z1 and Z3

as the largest staleness window regard-
ing x1 is determined by χ1.

Figure 2: YCSB++ benchmark coordination and con-
sistency measurement with Zookeeper as described in
[PPR+11] .

.

updated by the producer. After the producer client has inserted or updated (2.) a record, it

publishes (3.) the write to the ZooKeeper PubSub queue. The consumer client is notified

(4.) via ZooKeeper and then repeatedly requests (5.) the updated record, until the new

version is returned.

To provide a lower bound for the actual inconsistency window, the delay between the first

attempt and the first successful attempt to read a record is measured by the consumer. To

keep the impact of client coordination on the experimental results minimal, consistency

measurements are performed on only 1% of all objects.

2.3.2 Ordering Guarantees

Knowledge about the order in which writes become visible can be derived from knowledge

about stale reads. In [BVF+12], Bailis et al. capture the probability of MRC in the PBS

prediction model. Both Wada et al. [WFZ+11] and Bermbach et al. [BT14] compute MRC

violations on the basis of the log files generated during their staleness measurements. In

addition, Bermbach et al. also examine their experiment logs for violations of MWC and

RYWC. To our knowledge, no method for the quantification of WFRC violations has been

proposed so far.

2.3.3 Transactions

Recently, a wealth of scalable transactional datastores have been proposed and imple-

mented. Examples of these systems are large-scale distributed systems like Megastore,

Spanner, Percolator and F1 from Google, key-value stores enhanced by atomic multi-key

transactions like COPS, Granole, G-Store and Hyperdex, as well as more general-purpose

commit protocols and transaction managers like MDCC or Omid.

Bailis et al. examine the design space for systems that provide ACID guarantees and high

availability at the same time in [BDF+13]. They identify Read Committed as an isolation

level that is often used in traditional single-node database systems and can be achieved in

699



a highly available transactional datastore. Furthermore, the authors state that lost updates

and write skew as well as concurrent updates and potentially unbounded staleness can

never be prevented in a highly available system.

To fill the gap between classic SQL-based transactional benchmarks (e.g. TPC-C) and

simple cloud service benchmarks, YCSB+T [DFN+14] was proposed. It adds to the

four tiers defined in the original YCSB contribution (performance, scalability, availabil-

ity and replication) by introducing two new tiers transactional overhead and consistency.

The Transactional overhead tier measures the latency of transactional operations (read,

scan, insert, update, delete, read-and-modify) and transaction demarcation (start, abort,

commit). To achieve this, a so-called Closed Economy Workload (CEW) is defined. It

simulates bank account transactions in a closed system where money neither enters nor

exits. This workload executes operations similar to YCSB, but wrapped in a single trans-

actional context. For instance, doTransactionalReadModifyWrite reads two ac-

count records, transfers some money from one to the other and writes both records back.

To achieve this, the central contract between YCSB and the database, the DB interface,

is enhanced by (optional) transactional methods. The amount of concurrent transactions

is determined by YCSB’s threads parameter which defines how many threads execute the

workload in parallel. To ensure that no anomalies (e.g. lost updates) occur during work-

load execution, a validation phase is executed after the transaction (consistency tier). The

application-defined validation method takes the database state as an input and calculates

an anomaly score. For the CEW, this score is simply defined as the difference between

the initial and final sum of all accounts normalized by the amount of executed operations.

This score has a major problem: Not only does it not detect dirty reads and non-repeatable

reads, it also catches only a fraction of all lost updates, as lost updates can easily occur

without any changes to the sum of all account balances.

The evaluation of YCSB+T demonstrates the usage for one particular system, but lacks a

comparison of different transactional datastores. Benchmarking different scale-out trans-

actional systems remains an important open issue in this field. YCSB+T furthermore does

not detect transaction anomalies, it is limited to verifying state-based consistency con-

straints. While measuring anomalies (i.e. isolation level compliance) has been studied for

single-server scenarios [FGA09], deriving a scheme for distributed transactional datastores

thus remains an open issue. Another open challenge is the inclusion of the availability and

replication tiers for transactional benchmarking. To decouple concurrency from transac-

tion sizes and amounts, it would also be desirable to construct a benchmark which allows

for more complex configurations than a one-to-one mapping between threads and transac-

tions.

2.3.4 Consistency in the Face of Partitions

Informally, partition tolerance is the ability of a system to sustain operation in the pres-

ence of message loss between the nodes. As partitions are generally unavoidable, partition

tolerance is guaranteed by virtually all NoSQL databases.

While availability in failure scenarios has already been addressed by several studies, only

little work has been done on whether NoSQL databases keep their promise to remain con-

700



sistent during and after partitions. In his Call Me Maybe blog post series6, Kyle Kingsbury

examines several widely used distributed systems and their behaviour during network par-

titions, revealing that many do not comply with their marketing claims and actually lose

data where they should not. To this end, he presents Jepsen7, an open-source project

that facilitates injecting failures and running tests in a virtualised distributed environment.

Through his work, Kingsbury uncovers misunderstandings and implementation errors in

existing database systems.

3 Our Approach

To provide strict bounds on staleness, we are working on an approach that takes up the

idea of YCSB++ to provide a lower bound for the staleness window and extends it by

measuring an upper bound. The basic concept of our approach is illustrated in Figure 3:

Figure 3: Our multi-client consistency measuring approach employs decentralized PubSub queuing
to measure lower and upper bounds for staleness.

Similar to the YCSB++ approach, our experimental setup comprises at least one producer

and one consumer client as well as, of course, one datastore. One physical machine can

take the role of the producer for one data item and the role of the consumer for another.

Furthermore, several consumer clients can be used to measure the staleness window of

the same data item. Instead of handling communication through centralised messaging

(ZooKeeper in the YCSB++ approach), we use decentralized client-side messaging. Prior

to the start of an experiment, a consumer subscribes (1.) to be notified as soon as a specific

data item is updated by the producer. The producer writes (2.) the data item and publishes

(3.) the write to its local queue, so that every consumer is notified (4.) to repeatedly read

(5.) the item, until the new value is observed. If a consumer reads the new version of a

6Call Me Maybe blog post series: http://aphyr.com/tags/jepsen.
7Jepsen: https://github.com/aphyr/jepsen

701



stale value, he notifies the producer (6.). This allows us to compute an upper bound for the

staleness window of this particular read operation as the difference between the producer’s

timestamps directly after the consumer notification (6.) and directly before the write (2.).

Apart from preventing contention, reducing latency and simplifying the process of setting

up an experiment in comparison to YCSB++, using local messaging queues eliminates

network latency altogether, if producer and consumer share the same physical machine.

Furthermore, our approach does not rely on clock synchronisation and provides bounds

for the actual inconsistency that a client experienced. It should be noted, though, that a

valid upper bound can only be yielded under the assumption of MRC; in the absence of

MRC guarantees, the consumer client can request (.5) the data item for a longer time in

order to increase the probability of observing MRC violations, if they exist.

4 Conclusion and Open Challenges

NoSQL OLTP benchmarking is an active research topic and the boundaries of what is

achievable in the field of distributed databases are being probed by both scientists and

practitioners. Arguably, the most popular and most widely accepted OLTP benchmark

for NoSQL databases is YCSB which facilitates measuring operational throughput and

request latency for generic CRUD workload mixes. YCSB’s obvious strong points are an

easy-to-implement database interface, easy-to-use design and easy-to-extend architecture.

On the other hand, its highly generic design can also be seen as a drawback since it does

not account for functionality beyond simple CRUD and therefore does not capture the

performance of datastores well that offer more sophisticated operations. It is also possible

to model real-world applications like BG does, but this restricts applicability.

Several aspects of availability such as the effect of replication on steady-state performance

or system performance during node failure and recovery have already been addressed in

experimental evaluation. The differences between the available replication strategies and

their respective configurations, however, have not been studied to full extent as far as we

are aware.

As data-centric consistency cannot be measured without internal knowledge of the storage

system, only client-centric approaches seem viable for generic benchmarking frameworks.

Client-centric consistency in distributed systems can be measured along two dimensions:

Staleness describes the time during which an acknowledged write is not applied and or-

dering refers to the order in which writes become visible to clients.

An inherent issue with benchmarking consistency in a distributed system, however, is that

distributed measurement is also subject to imprecision through network latency and clock

synchronisation. Several approaches to deal with these issues can be found in the litera-

ture: Having reader and writer of the data item under consideration share the same machine

eliminates the communication delay, but also may lead to unrealistic results. Distributing

reader and writer over separate physical machines, in contrast, necessitates clock syn-

chronisation or leads to latency values that either include or ignore network delays. One

rationale in workload design is to measure only observed inconsistency, while the other

is to introduce artificial operations to increase the precision of the results. An interesting

702



question is whether the latter approach can actually lead to an observer effect.

To our knowledge, only little work has been done on the quantification of ordering guar-

antee violations in distributed databases. Until recently, the transactional consistency pro-

vided by a datastore has not been addressed by experimental evaluation. YCSB+T is an

important first step towards transactional benchmarking of scale-out datastores and pro-

vides a useful basis for quantifying the overhead introduced by wrapping CRUD opera-

tions in a transaction. However, the inclusion of the availability and replication tiers for

transactional benchmarking which have already been proposed in the original YCSB paper

remain open issues.

Ongoing work shows that aspects of performance like availability and consistency can be

quantified, but individual experiments only cover small parts of the vast space of possible

experiment configurations. For example, the impact of different failure scenarios or (wide-

area) replication strategies on both availability and consistency still need to be examined.

Further, the integration of existing approaches into a comprehensive and widely applicable

benchmarking suite is an important goal of future work.

References

[Aba12] D. Abadi. Consistency Tradeoffs in Modern Distributed Database System Design:
CAP is Only Part of the Story. Computer, 45(2):37–42, Feb 2012.

[BDF+13] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, et al. Highly Available Trans-
actions: Virtues and Limitations. PVLDB, 7(3):181–192, 2013.

[BG13] Sumita Barahmand and Shahram Ghandeharizadeh. BG A Benchmark to Evaluate
Interactive Social Networking Actions. In CIDR, 2013.

[BGH+13] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, et al. Bolt-on Causal Consistency. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’13, pages 761–772, New York, NY, USA, 2013. ACM.

[Bre00] Eric A. Brewer. Towards Robust Distributed Systems., 2000.

[BT11] David Bermbach and Stefan Tai. Eventual Consistency: How Soon is Eventual? An
Evaluation of Amazon S3’s Consistency Behavior. In Proceedings of the 6th Workshop
on Middleware for Service Oriented Computing, MW4SOC ’11, pages 1:1–1:6, New
York, NY, USA, 2011. ACM.

[BT14] David Bermbach and Stefan Tai. Benchmarking Eventual Consistency: Lessons
Learned from Long-Term Experimental Studies. In Proceedings of the 2nd IEEE In-
ternational Conference on Cloud Engineering (IC2E). IEEE, 2014. Best Paper Runner
Up Award.

[BVF+12] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, et al. Probabilistically
bounded staleness for practical partial quorums. Proc. VLDB Endow., 5(8):776–787,
April 2012.

[BZS14] David Bermbach, Liang Zhao, and Sherif Sakr. Towards Comprehensive Measurement
of Consistency Guarantees for Cloud-Hosted Data Storage Services. In Performance
Characterization and Benchmarking, volume 8391 of Lecture Notes in Computer Sci-
ence, pages 32–47. Springer International Publishing, 2014.

703



[CST+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, et al. Benchmarking cloud serving
systems with YCSB. In Proceedings of the 1st ACM symposium on Cloud computing,
SoCC ’10, pages 143–154, New York, NY, USA, 2010. ACM.

[DFN+14] Akon Dey, Alan Fekete, Raghunath Nambiar, et al. YCSB+T: Benchmarking Web-
scale Transactional Databases. In Proceedings of International Workshop on Cloud
Data Management (CloudDB’14), Chicago, USA, 2014.

[Eng13] Ben Engber. How to Compare NoSQL Databases: Determining True Performance and
Recoverability Metrics For Real-World Use Cases. Presentation at NoSQL matters
2013, 2013.

[FGA09] Alan Fekete, Shirley N. Goldrei, and Jorge Pérez Asenjo. Quantifying Isolation
Anomalies. Proc. VLDB Endow., 2(1):467–478, August 2009.

[FMdA+13] Alessandro Gustavo Fior, Jorge Augusto Meira, Eduardo Cunha de Almeida, et al.
Under Pressure Benchmark for DDBMS Availability. JIDM, 4(3):266–278, 2013.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

[GLS11] Wojciech Golab, Xiaozhou Li, and Mehul A. Shah. Analyzing Consistency Properties
for Fun and Profit. In Proceedings of the 30th Annual ACM SIGACT-SIGOPS Sympo-
sium on Principles of Distributed Computing, PODC ’11, pages 197–206, New York,
NY, USA, 2011. ACM.

[HKJ+10] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, et al. ZooKeeper: wait-free coor-
dination for internet-scale systems. In Proceedings of the 2010 USENIX conference on
USENIX annual technical conference, USENIXATC’10, pages 11–11, Berkeley, CA,
USA, 2010. USENIX Association.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

[LFK+11] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, et al. Don’t Settle for Even-
tual: Scalable Causal Consistency for Wide-area Storage with COPS. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11,
pages 401–416, New York, NY, USA, 2011. ACM.

[NE13] Denis Nelubin and Ben Engber. NoSQL Failover Characteristics: Aerospike, Cassan-
dra, Couchbase, MongoDB. Technical report, Thumbtack Technology, 25 Broadway,
Floor 9, New York, 2013.

[PPR+11] Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio López, Garth
Gibson, Adam Fuchs, and Billie Rinaldi. YCSB++: benchmarking and performance
debugging advanced features in scalable table stores. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, SOCC ’11, pages 9:1–9:14, New York, NY, USA,
2011. ACM.

[RGA+12] Muntasir Raihan Rahman, Wojciech Golab, Alvin AuYoung, et al. Toward a Principled
Framework for Benchmarking Consistency. In Proceedings of the Eighth USENIX
Conference on Hot Topics in System Dependability, HotDep’12, pages 8–8, Berkeley,
CA, USA, 2012. USENIX Association.

[WFZ+11] Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee, and Anna Liu. Data Consistency
Properties and the Trade-offs in Commercial Cloud Storage: the Consumers’ Perspec-
tive. In CIDR’11, pages 134–143, 2011.

704


