Jadex WIMS: Distributed Worktflow Management
for Private Clouds

Kai Jander, Winfried Lamersdorf
Distributed Systems and Information Systems
University of Hamburg
Hamburg, Germany
Email: jander, lamersd @informatik.uni-hamburg.de

Abstract—Structuring an organization around its business
processes has many benefits for both the processes themselves
as well as the workflow and business process management
within an organization in general. However, there are many
challenges that make such a transition from a classical hierarchic
to a state-of-the-art process organization difficult. In particular,
traditional departments often resist loss of autonomy within their
organization and, thus, may prevent successful implementation of
business process management techniques such as process-oriented
workflow management systems. Therefore, this paper proposes
a flexible workflow management system architecture consisting
of multiple parts that can be replicated and distributed within
an organization’s private cloud network. Based on distributed
components of a workflow management system, it supports
both organizations with legacy organizational structures as well
as those which require increased autonomy of their respective
organizational units. As a result, this system allows, on the one
hand side, to manage some organizational units independently
and to regulate them in a distributed, process-driven way while,
on the other, still allowing the overall organization to exploit
many advantages of a centralized workflow management system.
The resulting system is based on experiences of a DFG funded
technology transfer project aiming at applying previous research
results in autonomous business process management to practical
needs and requirements of a real production system application.

I. INTRODUCTION AND MOTIVATION

A key area of Business Process Management (BPM) which
deals with organizational structure is Business Process Orien-
tation (BPO) [1][2]. Business process orientation attempts to
restructure an organization around its processes by taking a
process view of the organization. For this, the organization is
structured to meet the requirements of its business processes
and their tasks. Individual units of the organization should
be focused on performing those tasks with the process itself
assuming full control and responsibility for all actions taken
within the organization. This means that organizational units
such as departments, work groups and structural hierarchies
essentially become service providers for the organization’s
processes.

However, while pure business process orientation has many
advantages once implemented, it has a number of disad-
vantages regarding its implementation. The core problem is
centered around the fact that it shifts control from individual
organizational units to the central authority of the process
management, both with regards to the processes itself as well

as the technical infrastructure if parts of the processes are
supported by a workflow management system. This means that
organizational units suffer a loss of both power and autonomy.

This has two important consequences which make pure busi-
ness process orientation difficult. First, there is a social aspect:
People within individual organizational units generally do not
welcome loss of power and autonomy and will attempt to
resist the change towards business process orientation. While
this behavior may not be entirely rational, it is commonly
experienced when attempting to reorganize businesses to align
them with their processes [3]. The second aspect involves the
concentration of power in the hands of the process engineers
and their management. This can be detrimental in cases where
organizational units are intentionally independent. This may be
necessary in cases where one unit is supposed to regulate or
control other units. An example would be an internal affairs
unit of a police force with regards to other units of the police.

In order to resolve this problem, approaches that form a
compromise between traditional separate organizational units
and the service view of pure business process orientation. For
example, one approach is matrix process orientation, where
old departmental units are retained in a reorganized form and
the processes are introduced as independent units of their
own [3]. As a result, this preserves some of the autonomy of
organizational units such as departments while still introducing
a process view to the organization.

However, this approach undermines the traditional approach
to automating business processes by implementing them as
workflows. As a result, a lot of techniques have been used
to support such hybrid organizations which attempt to bridge
the two organizational principles of traditional departmental
and hierarchical structures with process-oriented and service-
centered approaches and even cross-organizational linking of
business processes. However, useful techniques from workflow
management such as handling and distributing work items
from user tasks according to organizational models like roles,
aspects of business activity monitoring and access control are
often addressed on a localized and ad-hoc basis.

In fact, this often prevents the deployment of traditional
workflow management systems, because they require a form of
centralized control. On the other hand, deploying multiple het-
erogenous systems increases compatibility issues and increases
the difficulty of monitoring or may even prevent monitoring

altogether. In order to address this issue, a single system is
required which is flexible enough to allow organizational units
some autonomy.

Another aspect is the increasing use of mobile systems,
which have a number of special conditions and requirements.
For example, access to the network may be limited or intermit-
tent, which requires the ability to hold and process information
locally. Mobile devices are also energy-constrained, depending
on limited energy storage. Contrary to the previous require-
ment, this necessitates the use of networked resources to
reduce energy consumption spend on processing information.
As a result, a mobile device should use networked resources
if available and seamlessly fall back to local resources if the
network becomes unavailable.

This paper attempts to address these issues by proposing a
distributed, self-organizing and flexible workflow management
system based on Jadex [4]. The individual Jadex nodes can be
deployed on hardware-based systems or This system consists
of multiple components which can be deployed within a
Jadex Cloud by different organizational units addressing their
specific needs while still providing users of the overall system
with a transparent view similar to a traditional workflow
management system.

Jadex Cloud is a “Platform-as-a-Service” (PaaS) cloud sys-
tem [5] which provides the basic infrastructure for distributed
cloud applications. Like most PaaS platforms such as Pare-
mus', Jadex Cloud allows the execution of custom cloud-based
software without managing individual, potentially virtualized
machines commonly found in “Infrastructure-as-a-Service”
(TaaS) systems, nevertheless its deployment can be based
upon an already existing laaS infrastructure. By using Jadex
Cloud as a base, Jadex WfMS can take advantage of some
of the PaaS functionality provided by Jadex Cloud such as
automatic node discovery and awareness, service infrastructure
and communication and remote deployment and execution for
workflow models. In addition, the use of dedicated systems for
the workflow management system avoided due to the use of
the common cloud resource pool. In return, the Jadex Cloud
system gains additional workflow capabilities, thus improving
the platform as a target for workflow-based applications.

II. SYSTEM REQUIREMENTS

The goal for the workflow management system presented
here is to provide increased autonomy and robustness to
organizational units regarding typical workflow management
functionalities. Since each organizational unit can implement
its sub-processes independently and can encapsulate them as
services on the process level, distributed workflow enactment
was considered less important. As a result, the focus of
the system should be functionalities outside the enactment
domain, such as work item distribution, monitoring and access
control. In particular, each organizational unit should be able
to augment the functionality of the system with regard to
each specific aspect, allowing for partial control over aspects

Uhttp://www.paremus.com/

of workflow management outside the enactment. This im-
plies that the system should be decomposed into multiple
components, each of which provides a certain aspect of the
workflow management system as a whole. Each organizational
unit should be able to add components to the system which
interact using service interfaces and service calls. The system
must transparently self-organize itself as a single, distributed
workflow management system and integrate all the individual
components maintained by each of the organizational units.

As a first step towards an implementation of such a system,
the cloud environment[4] was assumed to be friendly and
cooperative, where, at least in principle, all the participants
share similar goals and are willing to work together in a
cooperative fashion. As a result, the target for such a workflow
management system is a private cloud, which is a cloud system
deployed and maintained within a single organization.

In order to achieve this goal of greater flexibility, the
workflow management system and its components must meet
certain requirements:

1) Each component must be able to be configured to the

specifications of the organization.

2) The system must deal with component of the same type
being deployed multiple times with different configura-
tions.

3) The workflow management must provide its function-
ality as long as there is at least one instance of each
functional component available.

4) The system should provide a certain amount of resilience
against unexpected loss of components. In particular,
even an exceptional termination (“crash”) of a compo-
nent should not impede the system as a whole.

These requirements imply a number of corollaries. First,
requirement 3 precludes the use of static links between com-
ponent services, each component must be able to switch to an
alternative service if the previous one becomes unavailable.
Second, in order to easily switch to alternative services, the use
of a particular service component should be transparent to the
service caller. Each service caller should be able to expect the
same results without regard to the service component used. As
a result, service components of the same type must coordinate
with each other if a service call influences some common
state. As a result, the system should be composed of a number
of component types, each representing a functional aspect of
the whole workflow management system. These components
must be loosely coupled and self-organize automatically into
a system that automatically adapts to changes to its infrastruc-
ture, providing a unified but dynamic and distributed workflow
management system to the user.

III. RELATED WORK

Workflow Management Systems are a well-established tech-
nology to manage human-centric and other tasks related to
workflows, which represent the executable parts of business
processes. The Workflow Management Coalition (WfMC) has
established a reference model for the basic functionality of
a complete workflow management system [6]. This model

\/

IWorkitemHandler

Workflow Management System

Authentication
s D ILogService

LS

ILogService

ILogService

IWorkitemHandler Work Item 2 0
L~ > M. ILogService
anagement > D
> >
2

|IExternal WfMS

D Active Component

>>
[

Provided Service

Required Service

Workflow User Client

Client

Figure 1.

already includes functionality for distributing the workflow
enactment service part of the system and integrating them
using a defined interoperability interface. However, unlike the
approach presented in this paper, the enactment service is still
a monolithic block and its functionality cannot be split and
arbitrarily distributed. In addition, the approach to integrating
multiple systems seems to be quite static and its fault tolerance
concerning network and node failures appears to be fairly
limited.

As a result, there have been multiple attempts to intro-
duce greater flexibility for workflow management systems,
most of which are focused on the enactment portion of the
system. This includes distributed processes and distributed
process execution. One approach attempts to fragment and
distribute processes based on the Business Process Execution
Language (BPEL) [7], enabling a distributed form of process
orchestration [8] while still requiring a central coordinator.
Another BPEL-based approach extends the original workflow
model in order to achieve a distributed version of the workflow
[9]. A SOA-based approach toward a more flexible workflow
management system is presented in [10], however, the focus
of the approach is mainly centered around workflow clients
and does not address replication and resilience aspects.

Some approaches of distributed workflow enactment are
based on multi-agent systems. In [11], the authors present an
approach for a distributed workflow engine based on a number
of autonomous software agents. The approach also integrates
web services as part of the overall infrastructure.

A model for distributed workflow enactment based on petri
nets is proposed in [12], which presents an approach based on
tuple spaces. It primarily presents a model and infrastructure
requirements for such a system, while useful extensions for
the tuple space middleware are described in [13].

The focus of these systems seems primarily centered around
the processes, the services they use and their enactment. Other
aspects of workflow management like work items, monitoring,
management of users and user accounts, access control and

Architecture of the basic Workflow Management System without flexible distribution

monitoring are rarely considered.

In contrast to these approaches, the approach presented here
puts less emphasis on the distributed workflow execution and
enactment. While the system allows distributed workflow exe-
cution using sub-processes, the focus of the system is primarily
other aspects of workflow management like distributed work
item management, access control, workflow model deployment
and distributed monitoring. This allows distributed adminis-
tration and management in multiple organizational units and
support for partial recovery from certain failure conditions
concerning network failures, node and component outtages and
network splits to increase the reliability of the overall system
and support deployment on special devices such as mobile
systems.

The next section describes the general approach based on
the requirements and goals for the system described in Section
IL. It presents the components used and the functionality they
provide to the system as a whole. This is then used in the next
section to describe the implementation of the system, followed
by an example deployment, limitations and enhancements and
the conclusions on the system.

IV. APPROACH

Jadex WEMS is based on an earlier and more traditional
workflow management system for deployment in private
cloud infrastructures [4]. This system was loosely based on
the Workflow Management Coalition Reference Model but
changed some aspects regarding the interfaces.

The system uses the concept of Jadex Active Components
[14], which allows the direct execution of workflow models
based on a dialect of the Business Process Model and Notation
(BPMN) [15] and the execution of goal-oriented workflow
models based on the Goal-oriented Business Process Notation
(GPMN) [16].

The WEMC Reference Model describes five different inter-
faces, three of which can be used by human users to interact
with the system. These interfaces derive their existance from
the target object they address (workflow models, work items,

etc.). However, we found it more useful to group functionality
in interfaces according to the users of the interface. For
example, interfaces that provide functionality to a human user
client are grouped into a single interface which unifies three
interfaces in the Reference Model (Process Model Repository,
Work List Handling and Execution) and adds an additional
layer of access control. This approach was mainly chosen
to simplify the interaction between client software and the
Workflow Management System.

The basic architecture of this workflow management system
can be seen in Fig. 1. In this architecture, the monitoring com-
ponent receives, stores and provides events occuring within the
system, such as initialization of new workflow instances, work
item distribution and task completions. This information can
be used for business activity monitoring purposes. The work
item management is equivalent to the worklist handler in the
workflow reference model and is responsible for distributing
work items to users and receive work results. Workflow model
management and execution is provided by the execution com-
ponent, which provides both the model repository and work-
flow execution aspects of a workflow management system.
This is due to the fact that workflows are executed as active
components themselves and both their model and execution
aspects are actually handled by the Jadex platform. As a
result, the execution component wraps the platform services
providing this aspect and supplies it in a more workflow-
centric form: For example, it filters available component
models for workflow models and provides a functionality
for uploading and deploying new workflow models during
runtime. The authentication component manages aspects re-
garding user clients and accounts. It authenticates connecting
user clients and associates them with a user account, provides
information about roles users have regarding workflows and
roles they have regarding access rights to the system, such
as the ability to start new workflow instances and monitor
workflow execution. The access rights are then enforced by the
access component, which uses the authentication component
to authenticate incoming connections from user clients and
verifies that the user account has the appropriate rights before
forwarding a user client request to the component which is
responsible for performing the request. For example, if a
user requests to start a new workflow instance, the access
component checks whether the user client is authenticated
with a valid user account and then uses a second service
call to ensure that the security roles of the user include the
right to start new workflow instances. If both service calls to
the authentication component succeed, the access component
performs a third call to the execution component to start
the new workflow instance. When the workflow instance has
started, the user is informed about the successful execution.

Due to the use of active components, this system could
already be distributed across multiple machines within a
private cloud; however, it required exactly one of each com-
ponent to be active, statically linked most required services
and could not cope with addition or removal of components
during runtime. As a result, there were few benefits to dis-

tributing the components aside from potential performance
gains and most common deployments of this system remained
on a single platform. Therefore, the components needed to
be enhanced to allow more flexible deployment and self-
organization in order to provide the required features. Another
critical aspect of single platform deployment was that the
users could circumvent the access component and its access
controls by directly calling services on the other components
of the workflow management system. Using multiple platforms
lets the workflow management system rely on a feature of
the Jadex Cloud middleware to prevent circumvention of the
access component. This feature allows the segmentation of the
cloud into separate logical networks. These networks share a
common secret and prevent service call access from nodes
unaware of the secret. This means that remote Jadex platforms
only allow access to local services if the appropriate secret is
known to the other platform.

Client Network System Network

Work Item Monitoring
Management

[Execution] [Authentication]

Figure 2. The Jadex Cloud is divided into two networks, the system network
for the workflow management system proper and the client network for clients
accessing the system

This allows the organization to divide the workflow man-
agement system into two separate domains (cf. Fig. 2). First,
the system network contains all internal components of the
workflow management system and second, the client network
containing the user clients. The clients are unable to access
the components of the workflow management system in the
system network, however, the access component is available on
a node which is available in both logical networks. This allows
the users to call services on the access component which can
then make service calls to the workflow management system
components in the system network after applying the access
controls, while being unable to directly perform service calls to
internal workflow management system components. In order
to support these functionalities, the five components of the
workflow management system had to be modified to become
autonomous and self-organizing. The next section provides an
overview of the implementation of those services and how
they interact with each other and self-organize to provide a
transparent view of a single workflow management system to
the user.

V. IMPLEMENTATION OF THE COMPONENTS

This section deals with the implementation of required
components to form a distributed, self-organizing and flexible
workflow management system. The generally structure and
division of functionality was based on the system described
in Section IV and it still consists of five types of compo-
nents. However, the components were enhanced based on the

requirements described in Section II so that any number of
component instances can be deployed somewhere within the
cloud. The system remains functional as long as there is at
least one instance of each component available.

A. Authentication Component

The authentication component primarily provides three
functions. First, it authenticates connecting clients using a list
of valid user accounts. Second, it provides workflow roles
associated with accounts which define which available work
item from the process can be distributed to the user. Third,
it provides security roles associated with the user account
which define the access privileges of the user to the system:
For example, a user may be allowed to request and process
work items but may be prohibited from starting new process
instances.

Since the system is supposed to support multiple instances
of this component with different sets of user accounts, roles
and security roles, a single authentication component must
delegate work to other authentication components if local
knowledge about a specific user account is unavailable.

Access Authentication available
component component Authentication
H components

authenticatey, |
authenticate 3, |

authentication
—done

authentication
exception

Figure 3. Interaction between the access component, the called authentication
component and other authentication components during a client authentication

For example, Figure 3 shows the interaction of a client
authentication. The access component receives a request for
a user client to be authenticated. The access component then
searches for the next available service interface offered by the
authentication component. It then submits the authentication
request to that authentication component. If the authentication
component is not the one that holds the account information
of the user of the client, it performs a service search for
the service interface of other authentication components. It
then successively performs a service call which asks the other
authentication component whether the user is eligible to be
authenticated.

As soon as an authentication component approves the
authentication request, the original authentication component
authenticates the client. If the list of available authentication
services has been exhausted and none has approved the re-
quest, the request for authentication is denied. Note that if
authentication is performed, it is done by the authentication
component originally called by the access component, not the
authentication component approving the request. The reason

for this approach lies with the service search done by the ac-
cess component, which attempts to find the local authentication
component first. The authenticating component will also cache
user account information such as roles and security roles,
allowing users to continue working in the aforementioned
failure scenario.

The implementation relies on the assumption that other
authentication components are trustworthy. This is a limitation
of the trust model of the system as it is currently implemented
and one of the primary reasons the system is currently aimed
at private clouds. Nevertheless, some protection is provided
by carefully organizing access to the logical system network
as discussed in Section IV. This prevents client nodes who
do not possess the shared secret of the system network from
using a malicious authentication component to inject invalid
authorization approvals and access rights into the system.
However, a malicious administrator of the system network
could still provide such a component. As a result, the system
network is critical for security. A potential approach for
mitigating this problem is discussed in Section VIL.

B. Execution Component

The execution component manages the deployed workflow
models, allowing users to deploy new workflow models and
remove old ones. In addition, it launches workflow instances if
requested by a user or by another workflow instance. Since the
workflow model deployment is based on platform support and
is therefore always deployed locally relative to the execution
component, a fairly simple delegation approach is sufficient to
support multiple execution component instances.

For example, if an execution component receives a request
to start a new process instance, it first checks whether the
process model is available in its local repository, in which
case the instance can be launched. If the process model is
unavailable locally, it will start a service search for other avail-
able execution components. It then queries those components
whether the model is available and once the right execution
component is found, it will send an execution request to that
component. Note that in contrast to the authentication compo-
nent, the execution component holding the model launches the
new process instance locally. This means that process instances
are always launched on the node where the process model has
been deployed. In case of failures such as network outages,
the workflow models of the affected execution components
become unavailable but other processes can continue so that
the system remains functional.

C. Work Item Management Component

The work item management component handles work items
issued by running workflow instances and offers them to
eligible users based on their roles. In order to make distribution
of multiple work item management components transparent to
the user, the components periodically inform other work item
management components about work items available to them
using a service call. The work item is then offered at each of
the work item components for processing by a user client.

Access Local Work Item Remote
component Management Work Item
assign Management

work item :
assign
work item o

transfer work item

_ workitem

store

work item work item

assignment
work item
assignment

Figure 4. Transfer of a remote work item, access control interaction omitted
for brevity

If a user requests a work item to be assigned to them,
the access component attempts to find a local work item
management component. If no local component is available,
a remote component is used. The work item management
component then checks if it manages the work item itself in
which case the work item gets assigned immediately. However,
if the work item is currently managed by a remote work item
management component, it calls that component with a request
to transfer the component (cf. Fig. 4). The work item is then
transferred to the original work item management component
which stores it along with its other locally managed work
items before assigning it to the user. The advantage of this
approach rests with the failure scenario of an intermittent
network interruption. If the original work item component
was available in the local network while access to the remote
component is lost due to loss of a network connection, the
users can continue working on the work item assigned to them
and perform normal work item operations while the remote
component is unavailable. Work results are then transferred to
the issuing process once the network connection is restored.

D. Monitoring Component

The monitoring component receives events from running
workflow instances and workflow components concerning cer-
tain aspects of its operation that may be interesting for a pro-
cess engineer to monitor. This includes events such as creation
of new workflow instances, generated work items, assignment
and completion of work items and task execution. These events
allow a workflow engineer or system administrator to monitor
the system for either technical issues or issues concerning the
performance of processes. In order to allow multiple moni-
toring components, the components must be able to exchange
events. Since the events already receive a time stamp at the
source, it is not necessary for the exchange to provide full
ACID (atomicity, consistency, isolation, durability) guarantees.
Instead, the approach used here follows the softer BASE
(basically available, soft state, eventual consistency) principle
with an option to further weaken the consistency criteria if it is
not required. However, since the events receive the time stamp
from their local source, the event order is only guaranteed
on the local level unless adequate clock synchronization is
provided.

During its creation, a monitoring component first attempts
to find an existing instance of this component type. If one is
found, it registers with the component for continuous exchange
of events using service calls. If it fails to find a partner
component for event exchange or loses its last one, it con-
tinues working under the assumption it is the sole monitoring
component. However, this assumption is not necessarily true.
For example, if two monitoring components start at the same
time, the components may be unable to find each other because
both are still initializing. A similar situation may arise when
a network split occurs, the monitoring components lose their
only event exchange partners but it becomes available again
if the network split is resolved later. When those situations
occur, the monitoring component may falsely assume it is
the sole component in the system. In order to detect those
situations, monitoring components that operate without an
exchange partner occasionally perform service searches to find
new monitoring components using the service search feature
of the Jadex Cloud infrastructure which may optimize them
using bindings, caching and announcement as appropriate.

During network splits and other connection losses, events
are not exchanged with other monitoring components and
therefore lack a complete set of events that occurred in the
system. Each monitoring component therefore maintains an
event log with all events it has received. This allows them
to quickly update their set once communication problems are
resolved. However, an unrestricted event log can grow without
bounds and may consume resources unnecessarily. Therefore,
monitoring components can be configured to occasionally
purge older events if the event log exceeds a certain size.
In case of communication, this can result in events never
being transmitted to all monitoring components, however,
since measurements are primarily done to identify issues, it is
most often used within a specific time frame, such as during
simulation [17]. In addition, if constant monitoring is used,
it is often for statistical purposes which can tolerate small
measurement errors. Nevertheless, if consistent monitoring is
required, the event log can be configured to be permanent.

E. Access Component

The access component allows user clients to access the
workflow management system and enforces access controls
with the help of the authentication component. Since the
access component is merely a gateway that relies on the other
components of the system and does not hold any state of its
own, it can trivially be deployed in multiple instances.

Client System Client

Network 1 Network Network 2
ien
-m -Access

Figure 5. A workflow management system network with two access
components and two different client networks

However, for the same reason there appears to be no reason
for doing so. While providing multiple points of access can
be done for performance reasons to allow parallel processing
of user client requests, in most cases the processing done by
the access component is fairly low since most of the work is
delegated to other components.

Nonetheless, aside from potential performance gains, there
is another reason why multiple access components may be
desirable. As described in Section IV, the access components
bridge two separate cloud networks, the system network which
contains the components of the workflow management system
and the client network, which contains the user clients that
connect to the system. Since the networks are separated
using a shared secret known to each node in the network,
organizational units may each desire their own secret and
client network in order to separately authorize nodes which
can run user clients. For example, if a department hires a new
employee, it wants to be able to set up the workstation for the
new employee internally without having to request a central
authority managing the shared secret to set up the user client.
This can be done by establishing separate access components
with the same secret for the system network and different
secrets for the client networks (cf. Fig. 5). Each of the access
components establishes its own client network by allowing
access from clients with its client network secret while denying
access from clients with another client network’s secret.

VI. EXAMPLE USE CASE AND EVALUATION

A scenario which relies on the features of the workflow
management system proposed here arose in the context of
a production preparation process which was a focus of the
Go4Flex project in cooperation with Daimler AG?. The pro-
duction preparation process deals with preparing and validat-
ing a planned production process for a new car model [16].

Part of the process involves teams that validate the produc-
tion process, both the construction parts of the vehicle and the
process steps, by performing a test assembly of the vehicle.
Issues that are identified during the process are later resolved
in expert work groups. During the assembly, the teams use
mobile devices to document the assembly itself and issues
that may arise. However, network connectivity to the main
network is often unavailable at the assembly location but
becomes available once the devices return to the offices. This
means that mobile teams are unable to communicate with the
main workflow management components that later distribute
documented issues to the relevant work groups. In addition,
the expert groups tasked with resolving the issues found during
the process are separated from each other.

In addition, since the process is based on exchange between
experts in a number of fields, the process participants originate
from a variety of departments such as part management and
logistics. These departments often rely separate databases and
other resources to address issues and suggestions which result

ZParts of the process presented here have been simplified and abstracted
for business secrecy reasons.

System
Network

Process
Engineering

Part
Engineering

intermittent connectivity)

Mobile Team Mobile Team

Car Model 1 Car Model 2
Tapiop AcGess
[Tablet | [Tablet] __Tablet

ystem Network

Figure 6.
Daimler

Deployment scenario for the production preparation process at

from the process. As a result, the expert often use their own
systems which need to be integrated in the WfMS.

Figure 6 shows how this situation can be resolved using the
proposed workflow management system. The mobile teams
form a local network with a minimalistic replication of the
workflow management system and form client networks for
each of the car models. This lets them use the workflow
management system while assembly is in progress. After the
assembly the mobile devices are returned and the components
of the mobile system network reconnect and synchronize with
the main system network of the workflow management system.
In addition, the expert groups have their own client networks
for the workstations in their offices with each of them having
a separate access component for connecting to the workflow
management system. This allows them to manage their own
workstations separately.

In the context of this deployment scenario the W{MS
solves the particular challenges for the workflow developed
for this scenario. A prototype implementation of the workflow
and applications was tested by the process participants as
part of a previously scheduled regular production prepara-
tion process on two separate occasion. The overall system
performed adequately during those occasions and the process
participants were generally satisfied with the prototype and
it was transferred to the Daimler IT department for further
evaluation and development.

VII. LIMITATIONS AND FUTURE WORK

The current implementation of the system realizes all men-
tioned concepts and performs well. However, there are a
number of general limitations and and some with regard to
particular components. As with any distributed system, the
workflow management system is ultimately constrained by the
CAP-theorem [18]. This means the system in unable to guaran-
tee consistency, availability and partition tolerance at the same
time. For the prototype system, it was therefore necessary to
make pragmatic choices regarding those guarantees. In most
cases availability and partition tolerance was considered more
important than perfect consistency.

For example, the monitoring component may not always
have the complete set of events that occurred in the system due
to connection loss. Consistency will eventually be restored if
the event log is permanent, but not all events may be available
at a given time. This is of particular importance if the event
log is limited, which means that a situation may arise where
consistency may never be reached since events can be lost
which are never transmitted to the client. In other situations
availability guarantees are abandoned, such as in the case of
the work item management component. If the connection to
the work item management component holding a particular
work item is lost, that work item cannot be accessed until
the connection issue is resolved. However, given the fact that
in many cases multiple people can request assignment for
a particular work item, access to a work item may also be
lost because a different user gets the work item assignment.
As a result, it was considered tolerable to allow restricted
availability.

However, some implementation-specific limitations remain
that could be resolved with some enhancements. In particular,
the current trust model for the system is based on the assump-
tion that the participants in the system are interested in co-
operating. For example, each authentication component trusts
other authentication components not to authorize malicious
users or assign additional access rights to unauthorized user
accounts. If the system is used within a single organization,
this is an acceptable approach since it can be assumed that
members of the same organization tend to share the goals
of the organization. In addition, social remedies such as
disciplinary actions are available to organizations to reduce
malicious behavior. Nevertheless, an interesting goal for such
a distributed system would be a cross-organizational deploy-
ment. In this case the above mentioned assumption no longer
holds because organizations have different or even opposing
goals, disciplinary actions across organizations are unavailable
and legal remedies are not always an option. This means that a
different trust model would be needed, where each component
holds a public certificate of components it trusts and augments
service calls with a signature. Currently the system does
not support this approach. Nevertheless, depending on the
trust relationship of the components, the approach may result
in an inoperable system due to lack of trust or introduce
unresolvable inconsistencies such as unassignable work items.

VIII. SUMMARY

In this paper we proposed concepts for a flexible, dis-
tributed workflow management system with a special focus
on problems beyond workflow enactment, specifically tackling
issues like distributed work item management, event logging
as well as user account and access management. The resulting
system consists of multiple components providing a specific
functionality, which can be replicated and distributed in order
to allow for increased fault tolerance. In addition, the system
allows organizational units to maintain some autonomy over
their organization while still being able to participate in an
organization-wide workflow managment system. This allows

organizations to begin introducing a workflow management
system gradually while transitioning into a pure process-
oriented organizational structure or (partially) maintaining
a more traditional organization structure in situations when
process orientation is not an option due to external constraints.

While the proposed system certainly has some limitations,
it is expected that some of these are eventually addressed.
Furthermore, the system as it stands now works adequately
for single internal deployments in organizations with the
aforementioned constraints.

Acknowledgement: We would like to thank the DFG for
supporting the technology transfer project Go4Flex.

REFERENCES

[1] M. Weske, Business Process Management Concepts, Languages, Archi-
tectures. Springer Verlag, 2007.

[2] F. Leymann and D. Roller, Production workflow concepts and tech-
niques. Prentice Hall PTR, 2000.

[3]1 W. S. H. J. Schmelzer, Geschdftsprozessmanagement in der Praxis.
Hanser Fachbuchverlag, 2008.

[4] L. Braubach, A. Pokahr, and K. Jander, “Jadexcloud - an infrastructure
for enterprise cloud applications,” in In Proceedings of Eighth German
conference on Multi-Agent System TEchnologieS (MATES-2011) (S. O.
Franziska Kliigl, ed.), pp. 3-15, Springer, 2011.

[5] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
tech. rep., July 2009.

[6] D. Hollingsworth, Workflow Management System Reference Model.
Workflow Management Coalition, 1995.

[7] OASIS, Web Services Business Process Execution Language (WSPBEL)
Specification, version 2.0 ed., 2007.

[8] L. Baresi, A. Maurino, and S. Modafferi, “Towards distributed bpel
orchestrations,” Electronic Communications of the EASST, vol. 3, 2006.

[9] R. Khalaf and F. Leymann, “E role-based decomposition of business

processes using bpel,” in Proceedings of the IEEE International Confer-

ence on Web Services, ICWS ’06, (Washington, DC, USA), pp. 770-780,

IEEE Computer Society, 2006.

A. Hausotter, C. Kleiner, A. Koschel, D. Zhang, and H. Gehrken,

“Always stay flexible! wfms-independent business process controlling

in soa,” in Proceedings of the 2011 IEEE 15th International Enterprise

Distributed Object Computing Conference Workshops, EDOCW ’11,

(Washington, DC, USA), pp. 184-193, IEEE Computer Society, 2011.

B. T. R. Savarimuthu, M. Purvis, M. Purvis, and S. Cranefield, “Inte-

grating web services with agent based workflow management system

(wfms),” in Proceedings of the 2005 IEEE/WIC/ACM International

Conference on Web Intelligence, WI ’05, (Washington, DC, USA),

pp. 471-474, IEEE Computer Society, 2005.

D. Wutke, D. Martin, and F. Leymann, “Model and infrastructure for

decentralized workflow enactment,” in Proceedings of the 2008 ACM

symposium on Applied computing, SAC °08, (New York, NY, USA),

pp- 90-94, ACM, 2008.

D. Martin, D. Wutke, and F. Leymann, “Tuplespace middleware for petri

net-based workflow execution,” Int. J. Web Grid Serv., vol. 6, pp. 35-57,

Mar. 2010.

L. Braubach, A. Pokahr, and W. Lamersdorf, “Jadex active components:

A unified execution infrastructure for agents and workflows,” in Intelli-

gent Hybrid Medical Complex Systems, Romanian Academy, 2012.

Object Management Group (OMG), Business Process Modeling Nota-

tion (BPMN) Specification, version 1.1 ed., Feb. 2008.

K. Jander, L. Braubach, A. Pokahr, W. Lamersdorf, and K.-J. Wack,

“Goal-oriented processes with gpmn,” International Journal on Artificial

Intelligence Tools (IJAIT), vol. 20, pp. 1021-1041, 12 2011.

K. Jander, L. Braubach, A. Pokahr, and W. Lamersdorf, “Validation

of agile workflows using simulation,” in Languages, Methodologies,

and Development Tools for Multi-Agent Systems (M. Dastani, A. E. F.

Seghrouchni, J. Hiibner, and J. Leite, eds.), pp. 39-55, Springer, 8 2011.

S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of

consistent, available, partition-tolerant web services,” SIGACT News,

vol. 33, pp. 51-59, June 2002.

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

