
International Journal of Cooperative Information Systems
fc World Scienti�c Publishing Company

SUPPORTING ELECTRONIC COMMERCE TRANSACTIONS

WITH CONTRACTING SERVICES

MICHAEL MERZ, FRANK GRIFFEL, TUAN TU, STEFAN MÜLLER-WILKEN

HARALD WEINREICH, MARKO BOGER, WINFRIED LAMERSDORF

Distributed Systems Group

Department of Computer Science, Hamburg University

Vogt-Kölln-Str. 30, D-22527 Hamburg, Germany

http://vsys-www.informatik.uni-hamburg.de

Based on the speci�c characteristics and requirements for an adequate electronic com-

merce system support, this article gives an overview of the respective distributed systems

technologies which are available for open and heterogeneous electronic commerce appli-
cations. Abstracting from basic communication mechanisms such as (transactionally

secure) remote procedure calls and remote database access mechanisms, this includes

service trading and brokerage functions as well as security aspects including such as

notary and non-repudiation functions. Further important elements of a system infras-

tructure for electronic commerce applications are: common middleware infrastructures,

componentware techniques, distributed and mobile agent technologies etc. As electronic

transcations enter the phase of performance, increasingly new and important functions
are required. Among these are: negotiation protocols to support both the settlement and

the ful�llment of electronic contracts as well as ad-hoc work�ow management support

for compound and distributed services in electronic commerce applications. In addition

to an overview of the state of the art of the respective technology, the article brie�y

presents some related projects conducted by the authors jointly with international part-

ners in order to realize some of the important new functions of a system infrastructure

for open distributed electronic commerce applications.

Keywords: Distributed Systems, Electronic Commerce, Electronic Contracting, Compo-

nentware, Work�ow Management, Service Trading, Brokerage, Negotiation

1. Introduction

As an area of research, Electronic Commerce has various facets that span from the

economic and legal infrastructure over software standards and platforms to horizon-

tal applications (which are speci�c for a certain function) and vertical applications

that address the needs of a certain business sector. In this article, we will present

electronic contracting as a horizontal transaction support function. Electronic con-

tracting can be de�ned as the complete process that is required to achieve a legally

supported business relationship that is accompanied by an electronic contract as the

common and neutral representation for all obligations the involved parties agreed

on.

1

2 M. Merz et al.

1.1. Centralized vs. decentralized architectures

Today, many users of large computer networks demand a re-centralization of enter-

prise computing systems in order to reduce roll-out e�orts and maintenance costs.

This development can be considered as a sober response to the idea of distribut-

ing any service at any time on any kind of heterogeneous hardware and operating

system environment. Today, certain �low-level� services are accepted as inherently

distributed such as DNS, NFS, HTTP, SMTP, etc. On the other hand, there are

many others that were expected to be distributed applications in the early 90ies

and before: distributed databases, shared editing, application-level extensions to

the telecommunication infrastructure. However, they did not succeed in day-to-day

practice by now. Why that?

One may argue that the �rst of these services are historically better understood,

but there is another reason for the lacking success of the latter: the complexity of

their respective speci�cations. A distributed database is not only itself a complex

application but also the data models on top require immense conceptual and tech-

nological integration e�ort. If there exists a centralized alternative that could be

followed without facing prohibitive costs � this option would usually be chosen.

For a couple of years, however, the Internet established a drastically decentral-

ized communication platform that �attens hierarchies, overcomes organizational

borders and liberates small companies and individuals from high investment costs

for communication access. This development stimulates the cooperation between

business partners and their heterogeneous, proprietary software systems.

Finally, it is trivial to state that organizations are distributed across cities,

regions, and countries. Since they coordinate the exchange of goods, services, and

payments across their organizational boundaries and therefore across long distances,

we �nd a natural need for a correlated support of electronic commerce applications

by distributed systems. In this area, the distribution of applications is not only an

option but a precondition for commercial life.

However, interorganizational business relationships coincide with contractual re-

lationships, as has been elaborated.1 To overcome delays and bureaucratic obstacles,

we propose electronic contracting as a supporting service that helps enterprises to

� identify business partners,

� match their individual o�er speci�cations with complementary ones from other

market participants,

� negotiate conditions and contractual terms,

� collectively sign contracts, and �nally,

� execute obligations and actions that are de�ned in the contract.

For this reason, we will �rst analyze the structure of an electronic commerce trans-

action in more detail and afterwards present the supporting services mentioned

above.

Supporting Electronic Commerce Transactions With Contracting Services 3

1.1.1. Modeling commercial transactions

To provide a systematic classi�cation of electronic commerce technology, two view-

points could be taken: First, a distinction between businesses, consumers, and pub-

lic authorities could be chosen for the respective roles of buyers and sellers of goods

and services.2 However, if we consider single persons as legal entities thus represent-

ing a market participant equal to a company, the borders between these categories

will blur. We therefore consider any market participant as a �business�. Instead, we

will follow the phase model for commercial transactions as the guidelining pattern to

decompose architectural elements of an electronic contracting service.3 The phase

model consists of three main phases:

� In the �rst information phase, market participants o�er product speci�cations,

search for possible transaction partners, compare product speci�cations and prices,

and evaluate o�ers.

� Then, after an initial contact has been established between some market partic-

ipants, respective (service) o�ers and counter-o�ers are exchanged during the so

called contract negotiation phase. This negotiation process may either lead to a

situation where agreed terms and conditions have been reached or the negotiation

is abandoned.

� In case of a contract establishment, �rst all participants commit their participa-

tion in the contract with their respective signatures, then the agreed assets are

exchanged during the contract performance (or: execution) phase. The time-span

of this phase may reach from a few seconds up to several years.

Service
Offer &
Request
Catalogue

Information Negotiation Service Execution

Range of
Policies,
Options

Fig. 1. Business Transaction Phases.

Following these phases, a clear separation of services can be given that are required

for an electronic marketplace:

(1) Information phase: This phase may be supported by (computer) functions like

online catalogues, search engines, or banner advertising.

(2) Negotiation phase: Here support for telecollaboration, negotiation protocols and

strategies may be used to achieve an agreement.

4 M. Merz et al.

(3) Execution phase: During this phase, work�ow management, business process

integration among market participants, electronic payment systems, EDI-based

message exchange functions, etc. may be provided in order to support the

automatic execution of electronic commerce applications.

In between these phases, the following additional functions may be required:

� Brokerage support in order to select and match respective o�ers and inquiries, to

form a (service providing) consortium or to set-up the negotiation session for all

parties of the commercial transaction

� Signing support to enter the execution phase by establishing a contract and en-

suring for all parties to sign it. This process may be supported by trusted third

parties such as certi�cation authorities or electronic notaries.

In order to keep the model simple, yet without unrealistic abstraction, we consider

any good as a service:

� A payment is a service provided by the customer. The result of the service is the

transfer of data which is interpretable as a transfer of a value. This might either

be an electronic coin or the authorization for a funds transfer between two bank

accounts.

� A tangible good can be represented in the system as a service: It is selected, or-

dered and paid electronically and even the physical delivery is accompanied by

a range of services and data communications that may be used by the commer-

cial parties (transfers of electronic EDI documents, access to information on the

delivery state, etc.).

1.2. Organization of the article

According to the progress of a commercial transaction introduced above, the next

section starts with a brief introduction of a catalogue service that provides the com-

mon basis for all contracting activities. As the next step, the brokerage process is

described as a function that establishes contract proposals on behalf of the con-

tracting parties. In order to negotiate contract terms and conditions, the required

collaboration support is described afterwards. Contract signing and execution are

subsequently addressed in sections 5 and 6. The article concludes by re�ecting on

a component-oriented view of the described software systems.

2. Catalogue Services

To inform customers about the range of products and their speci�cations, catalogue

services are used as a shared information base for both vendors and customers. A

catalogue service also establishes a comfortable front-end for activities that are

carried out under the execution phase (such as payment and product delivery).

Internally, catalogues are updated by the supplier's stock management system to

keep the information displayed in sync with the physical warehouse.

Supporting Electronic Commerce Transactions With Contracting Services 5

Today, a catalogue service is deployed by an individual supplier who intends to

provide access for the customer to the range of tangible or intangible (�soft�) goods.

For small vendors, a catalogue may be hosted by a third party in the same way as

web servers are hosted by an Internet Service Provider. In this case, an individual

vendor remains responsible for his own �shop� in terms of presentation and product

data. A uni�ed settlement of payments and possibly the delivery of soft goods,

however, is centralized by the shopping mall provider.

Consequently, providers of catalogue services tend to further break down the

hurdle for o�ering goods in a mall system by allowing vendors to enter single o�ers

into the catalogue: this leads to an o�er database, that allows competing market

participants to register their o�ers in a suitable category of the o�er database.

This concept has already been addressed several years ago by the ODP trader

service,4 that not only suits for storing (exporting in ODP lingo) product speci�-

cations but also service speci�cations in a formal sense: services are understood as

instances of a service type that includes service attributes and the interface type.

A trader additionally provides the matching of o�ers and inquiries. Later-on, this

technology has been incorporated into CORBA standardization as the trader Ob-

ject Service.5 Before focusing on the trader service in the following section, we will

�rst illustrate the catalogue information model: three kinds of data are stored:

� Participant pro�les. These contain information on the ID, name, and address

of the participant. Also online addresses and individual communication prefer-

ences (such as encryption, authentication, non-repudiation, etc.) are stored here.

Pro�les can be browsed and queried by other market participants.

� O�ers. Participants store o�ers into the catalogue database. O�ers mainly consist

of dynamic feature sets that represent product speci�cations as name-value pairs.

� Contract templates. Contracts bind together parties (recruited from market par-

ticipants), obligations, and other legal clauses. In the state of a template, a

contract in incomplete, i.e., parties are not completely de�ned and o�ers only

speci�ed but not yet matched to an o�er entered into the catalogue.

Catalogues can be browsed and queried through all three entry types. By using a

dedicated tool � the contract editor � users may step-by-step compose complete

contracts from scratch or by re-using contract templates as well as existing o�ers

and pro�les.

3. Service Brokerage

The next step in any business transaction process is the location and selection of

an appropriate business partner. Based upon a more or less precise concept of

the attributes the customer is interested in, a catalogue service will be contacted

to search for suitable o�ers. Apart from a speci�c description of the o�ered good

itself, such o�ers most commonly contain information on business conditions and

how to contact the supplier, negotiate where appropriate and �nally complete the

business transaction.

6 M. Merz et al.

Various catalogue services � or more general � sources of information are used

in every day life. Possible alternatives range from plain white pages services over

yellow pages services and professional publications to mail-order catalogues. Addi-

tionally, more and more third party services o�er their customers the convenience

of only having to formulate certain criteria and a price range of the good they are

interested in.6 It is then the duty of the service provider to locate a supplier that

has the most suitable o�er with respect to the formulated query. It is primarily

due to the relatively high transaction costs (call the provider, formulate a query,

be charged for the service etc.) that this optimised way of service location is yet

only available for more valuable goods. And it will be especially this area, where

commerce will de�nitely bene�t from getting �electronic�!

The process sketched above best maps into the commercial transaction's in-

formation phase and here especially into the brokerage support. Customers �rst

gather information by means of catalogue services, �nd goods or services they are

interested in and then use a brokerage facility to locate the optimum supplier to

deliver the good or o�er the service. Using the information they receive from the

brokerage facility, the can then start a conversation with the supllier to �nalize the

business transaction.

All aspects of an �electronic service market� are to take place on�line.7 This is

especially demanding with respect to the information phase and here it consequently

means that one will need to have an e�cient, reliable and economical means to

locate and access services in highly distributed systems. To accomodate these goals,

it is pro�table to integrate methodology as developed in the �eld of ODP (open

distributed processing) and CORBA (common object request broker architecture),

where the type�safe location and mediation of services has become an important

aspect.

3.1. Service mediation in distributed systems

The introduction of low- to medium-cost computer systems in the mid-eighties led

to an increasing interest in distributed computing systems. Where centralization

had been the most important �weapon� to gain cost e�ectiveness in the computing

business, new buzzwords were scalability or heterogeneity. Terminals were substi-

tuted with desktop PCs and powerful workstations entered the midrange computing

market. It was then, when the need arose to �nd reliable tools to create software,

that could be spread over a whole group of machines, sometimes thousands of miles

away from one another.

Various approaches were made to solve the problems, of which the introduction of

so called middleware plattforms may have caused the deepest impact.8 Middleware

refers to a software layer that mediates between the application and the actual

operating system and consequently abstracts from peculiarities of the operating

system, the computing system or the network it runs on. Additionally, middleware

plattforms o�er supporting services (authentication, distributed �lesystem, time

synchronization, etc.) usually needed by a broad range of application systems. Of

Supporting Electronic Commerce Transactions With Contracting Services 7

the attributes that constitute a middleware plattform, openness is perhaps the most

important. Openness in this context means the availability of protocol speci�cations

to anyone, thus enabling the integration of what system soever.

The advantage of the middleware approach for the application developer is that

he can now more easily port software to di�erent plattforms and integrate them

without putting much e�ort into dealing with varying plattform issues. The advan-

tage for the computer user was that she could now pick the system best suiting a

certain environment or demand while still being able to be part of a large system

� which becomes most important with work�ow-like execution of a contract (see

sections 6 and 7). New workstations could be integrated or removed as necessary,

a feature that led to very cost e�cient computing system solutions.

An important concept in a distributed system is that of service types. All services

that are available in a distributed system are instances of an explicitly or implicitly

de�ned service type, thus making it possible to classify all existing services and

support course-grained queries on such classes. A service type generally consists

of a name, a set of properties and a list of interfaces a service conforming to this

type has to o�er. A service property could be the maximum number of pages a

print service is able to process per minute or the printing resolution it o�ers. The

service type does not contain actual values. It merely de�nes the type of value a

property may have, e.g. �string� or �unsigned integer�. The interface types de�ne

the operational interfaces a service o�ers. Each interface type lists a number of

operation types where each operation type can contain zero or more data types.

Based on formal rules, service types can be organized in a type hierarchy where

specializations of a type are called subtypes, while generalisations are named its

supertypes.9 If a service instance belongs to a subtype, it may � at least formally

� be used, where a service of its supertype is required. This means, that an

instance of a subtype will o�er the same operations that can be called with the

same number and type of arguments. Obviously, an instance of a subtype will not

automatically have the same property values, so unless the service is stateless (e.g.

mere calculation based on operation arguments), this fact will have to be taken into

account.

It is obvious that larger scale distributed systems raise the problem of �nding

appropriate strategies of locating service instances. While more static systems will

allow for special service location tables, systems with more dynamicity will demand

more sophisticated means. As with the real life example given above, the easiest

approach will be that of �white pages�, in distributed systems terminology called

catalogue services. A catalogue service holds entries with name and type of a service

along with a reference to its location. If there are more service entities of the same

service type, it is the callers duty to pick one, using name and location as decision

aids. Simpler catalogue services will o�er a �at list of entries, more sophisticated

ones might have a hierachical structure. While using catalogue services might su�ce

for smaller, or less dynamic environments, it is not practical for extremely dynamic

environments like that of global scale �network-markets�. Here, numerous instances

8 M. Merz et al.

of a service type might arise and their name and location would no longer be ad-

equate to �nd the best o�er. It is the notion of service mediation10 that �lls that

gap.

The main task of a service mediation facility is to manage and mediate services

in an open distributed systems. To accomplish this, the mediation facility provides

functions to classify and store service o�ers and to locate certain service o�ers that

are stored within an o�er space. Generally, the service mediation facility is referred

to as a trader, a service provider is called exporter, whereas the service client is

called importer.

The relation between trader, exporter and importer is most commonly refered

to as the �trading triangle�. The exporter �rst contacts the trader to advertise its

service. To do so, it sends a service type reference, that is, the category the service

belongs to, values of all service properties along with a reference to its call interface

in an exporting request to the trader. The trader stores the service advertisement in

its o�er space. When a client is looking for a service of a certain type and certain

characteristics, it formulates a query that contains the sought service type along

with the selection criteria and sends it in an import request to the trader. The

trader scans its o�er space for o�ers of the required service type and returns all

o�ers of that type that additionally match these criteria. Finally, the client uses

the interface reference stored in a returned service o�er to initiate a conversation

with a service provider.

The TRADEr, developed as part of the �TRADE� (TRading And coorDination

Environment) research project at the University of Hamburg, was one of the �rst

trading facilities available.11 It was designed as an enhancement to the DCE mid-

dleware environment and thus could be used by any DCE-aware application. The

TRADEr contained all features mentioned above, including a type-management

component, a service selection and management component and an access control

module. Additionally, the TRADEr included a trader federation facility,12 thus

providing the means for partitioning the service o�er space and making it possible

to deal with scalability problems in larger environments.

Trading services have been formally de�ned for both ISO ODP4 and OMG

CORBA5 and academic as well as commercial implementations are currently avail-

able. Still, today�s trading services have conceptual de�ciencies that have to be

handled, before suiting the needs of an electronic service market.

3.2. The brokerage facility � n-party trading for electronic service markets

So far, all service types and service instances were implicitly assumed to be �atomic�.

However, this represents no realistic picture. It is more likely that services in any

serious application scenario will be aggregations of, or at least contain, multiple

service instances themselves. A real world �print service� for example, while o�er-

ing one service to its customers, essentially would consist of a printing service, a

binding service or maybe even a layout service. To take this into account, various

Supporting Electronic Commerce Transactions With Contracting Services 9

enhancements have to be made to the notion of service types as well as to service

mediation methodology.

First of all, a new feature within the brokerage facility is the introduction of

service type templates. In contrast to traditional service types, templates allow the

nesting of service type de�nitions by means of inclusion of service type references

in addition to operation- and property types. This allows a more realisic modeling

of services and is the basis for an e�cient service mediation facility in electronic

market scenarios.

Conceptionally, a service type template o�ers an operational interface like any

service type would, while at the same time internally consisting of or containing

references to multiple service types or type templates. Basically, this can be realized

in two ways: a service type template can be an aggregation of the included service

types, only combining their operational interfaces and properties; or it can be a

new, enhanced type with an own interface and own properties. While the latter

better resembles reality (where the whole is more than just the sum of its parts)

it still is to be investigated how to adapt existing type theory (espec. derivation

rules).

A second important novelty is the de�nition of service type factories. A service

type factory is a parametrizable service type where an actual service can only come

into existence, when certain thresholds are passed. This can, for example, be the

number of clients that have to state their interest in a service type before a service

can be instantiated or the number of resources of a certain kind that are necessary

to realize some service.

As an introducing example, one might think of car production. When man-

ufacturing cars, there will always exist certain thresholds from where on initial

investments will be regained and the business starts to be pro�table. It is thus the

aim of any car manufacturer to sell as many units as possible of a certain model.

On the other hand it is natural only, that customers always tend to show some

individualism by demanding extras in a car and they will prefer the manufacturer

that is able to deliver them.

In an online service market context, one could formulate a service type factory

that de�nes the number of customers necessary for a pro�table production. Another

example might be that of an auction that can only take place with a minimum

number of bidding parties but will no longer work when the number of bidding

parties exceeds some threshold.

In both cases enhancements will have to be made to the service mediation facility

itself. Where before the service mediation ended with the delivery of service o�er

references to the client, now the process is enlonged: in the �rst case, an o�er can

only be delivered when a certain number of clients have stated their interest. The

clients will have to be committed to the query for a de�ned time and the query

will have to be postponed until enough clients have been �booked�. In the second

case, services may be added or substituted even after the �lled template has been

delivered. Both are capabilities not available with existing trading facilities.

10 M. Merz et al.

3.3. Brokerage in the �eld of online service negotiation

The brokerage facility will be of particular interest for service negotiation and con-

�guration. As described in more detail in the next section, brokerage facilities can

be used to �ll so called protocol templates (another form of service type templates)

and thereby support agents in �nding appropriate negotiation parties. Here it is

essential to the agent, that the process of �lling a template is invisible to him and

as mentioned above, it will be the duty of the broker to locate and commit service

providers to take part in a negotiation.

4. Service Negotiation

Negotiation is the process of reaching an agreement for a service speci�cation. This

may take place either out-of-band, by letting market participants negotiate without

electronic means, or it may be done on-line. In this case there are several stages of

automation possible:

� Using collaboration tools. In this case, human users are involved in the negotiation

process. They use, e.g., a shared-editing tool that allows them to concurrently

edit a document in a consistent way. The negotiation is free-form, i.e., there

are no restrictions for the order of document accesses or the structure of the

document.

� Using negotiation protocols. In this case, either human users or software compo-

nents participate in the negotiation. The negotiation subject is still unstructured,

i.e., the participants �know� how to deal with it. The ordering of document ac-

cesses however is formalized and parameterized, .i.e., a negotiation protocol is ap-

plied to specify which party delivers which information at which stage to whom.

The negotiation can be understood as a work�ow process that is driven by a

prede�ned process description.

� Using formalized conversations to further structure the negotiation protocol.

Speech act theory (Speci�cally, the Knowledge Query and Manipulation Lan-

guage, KQML)13 provides a linguistic means to de�ne formalized messages that

relate - in the case of negotiations - to concepts such as �o�er�, �reject�, �propose�,

�accept�, etc. This further helps to tailor the involved software systems for the

speci�c application of negotiation support: it may, e.g., react in a di�erent way

when it receives an o�er instead of a proposal.

� Finally, the complete negotiation process may be automated (and therefore dele-

gated to �autonomous� software components) if the ontology for the negotiation

subject has been standardized as well. In this case �speed� and �price� are features

that a software component is able to reason about. Therefore, AI technologies are

applied in this area for knowledge representation and for applying policies that

have been de�ned to control negotiation strategies. Such an intelligent software

agent is now capable at least to estimate �price� and �speed� and to trade-o� their

values in a reasonable way.14

Supporting Electronic Commerce Transactions With Contracting Services 11

In today�s real world, automated negotiation is not used so far for the following

reason: Only if the service speci�cation is kept simple (i.e., only a few Quality of

Service attributes), a strategy module can be practically used for negotiating them.

The more complex the speci�cation becomes, the more e�ort needs to be spent

for implementing policies and strategies for the agent. If a simple speci�cation is

su�cient, the service can be considered as a commodity on the other hand, i.e., a

good that is o�ered by a large number of vendors on a highly competitive market

and for which an individual negotiation would come at prohibitive costs.

Therefore, the practical integration of negotiation mechanisms won't be feasible

unless negotiation support is designed as an integral part of the overall software

system. In the following, we will discuss the requirements for automating the ne-

gotiation process in the domain of E-Commerce and describe a system architecture

which is currently being developed to provide the corresponding negotiation support

for participants in electronic markets.

However, before starting to develop automated negotiation mechanisms, it is

important to realize the scope and to recognize the potential advantages and dis-

advantages of such an automatism, since it can di�er a lot from a conventional ne-

gotiation with human participants: First, in order to achieve a meaningful course,

an automated negotiation usually needs to have an explicit goal which is pursued

by a process formally speci�ed by means of a protocol. Second, it can be assumed

that there are no psychological aspects � for instance, there are no accompanying

arguments � in the automated process, which can play a very important role in

the conventional, human case. Third, due to the use of electronic media, a whole

bunch of unforeseen chances as well as risks emerges in the automated case, for

example, there are principally unlimited participation possibilities for a person or

business party, on whose behalf a negotiation can be carried out. Generally, advan-

tages of automated negotiations are performance (computing vs. thinking) and the

potential to �nd more options or possible solutions in case of complex negotiation

problems. Disadvantages are the potential predictability and exploitability due to

the computability of the underlying algorithms and the possibility of failure due to

the absence of psychological arguments (which can often be more convincing than

formal ones).

In order to automate the task of negotiation completely, several of the automa-

tion mechanisms listed above have to be fully speci�ed, developed and provided in

an integrated manner: a communication language to exchange negotiation messages,

a negotiation protocol specifying the possible courses of the negotiation process, and

for each participant, a negotiation strategy to compute the negotiation action to

be taken at a given time has to be provided. Then, a mechanism of �glueing�

these functions together and integrating them into a component providing a uni-

form external interface to other participants is required. The most natural and

�exible way to achieve this is apparently employing agent technology, since this

programming paradigm provides exactly the right abstraction level: Each agent is

an autonomous software component acting and negotiating on behalf of a person

12 M. Merz et al.

or business party. Especially, the deployment of mobile agent technology, which is

being established the �eld of E-Commerce, o�ers additional advantages like location

independence, asynchronous (mobile) user support, reduction of network tra�c etc.

However, since on the one hand the number and complexity of possible negotiation

protocols and strategies is principally unlimited and the size of a mobile agent on

the other hand should obviously be kept as small as possible, the incorporation

of automated negotiation capabilities � as well as �intelligent� (reasoning) capa-

bilities in general - into mobile agents could pose serious performance problems.

Therefore, we have proposed a modular and very dynamic framework, in which the

required negotiation capabilities can be subsequently loaded into a mobile agent or

can be exchanged at run-time and which also allows explicit control of the mobility

of an agent's components. The design of corresponding agent's modules providing

negotiation capabilities including communication, protocol and strategy has been

presented and the implementation of a plug-in mechanism to link such modules and

embed them into mobile agents dynamically has been described.14 In the rest of this

section, we will focus on several support services to assist users to assemble their

own negotiation enabled agents, especially to get their protocol and strategy mod-

ules, and to enable the agents to initialize and execute the automated negotiation

in an e�cient and reliable way.

Strategy
Building

K it

Strategy
Building

K it

Protocol
Generator

Protocol
Generator BrokerBroker Protocol

Engine

Protocol
Engine

C

PS

A GENT

1
3

2 4

5

6

design initialization negotiation

Fig. 2. Structure of negotiation enabled agents and support services.

Negotiation support services can be categorized as follows: At design time, services

are needed to support users in designing and developing negotiation protocols and

strategies. These services are called protocol generator and strategy building kit

respectively and can be o�ered by third-party providers who also implement ready-

to-use protocol and strategy modules from which a user can choose to equip his agent

for a negotiation. In the initialization phase, a brokerage service (called broker)

is needed to support the agents in �nding appropriate negotiation parties. In the

negotiation phase, an execution component, called protocol engine, can be employed

to coordinate and monitor the interactions between the agents, thus making them

behave conformable to the corresponding negotiation protocol.

Supporting Electronic Commerce Transactions With Contracting Services 13

� Broker. The functionality of this service has been described in section . The

basic schema of the initialization of an automated negotiation using agents, in

which the broker plays a central role, includes the following steps (as illustrated

in Fig. 2):

(1) An agent contacts the broker in order to initiate a negotiation on a certain

issue.

(2) Thereupon, he is required to choose a protocol template, which has been

created and stored with the protocol generator, and register for a role in the

template, e.g., for the role of the auctioneer.

(3) Further agents register as interested parties for appropriate roles which have

not reached the maximal number of instances, e.g. for the role of an auction

visitor.

(4) When the start conditions of the negotiation, for instance when the minimal

number of visitors for an auction is reached, are ful�lled, all participants are

noti�ed and the completed template is passed to the protocol engine.

(5) For each participating agent, the protocol engine generates a corresponding

protocol module which is dynamically embedded into the agent frame.

(6) Then, a proper strategy module �tting to the protocol module is chosen from

the strategy building kit and plugged into the agent, and the negotiation

process can now start.

� Protocol generator. Formal protocols to coordinate and monitor completely auto-

mated negotiations need to have an expressiveness which is strong enough to cover

numerous requirements with respect to the aspects issue of negotiation (number,

negotiable attributes, range of values), participants (roles, quantity, admission and

exclusion conditions), proceeding (round speci�cation and round number, voting

method, timeout handling, truncation conditions), validation (syntactical and se-

mantical correctness of o�ers and negotiation actions), and bindingness (scope of

contractual binding of negotiated result to participants, bindingness of protocol

itself). It is has been argued that static mathematical models are not appro-

priate to completely automate the negotiation process in an open environment

such as the domain of electronic commerce, since they are not expressive enough

to capture the dynamic aspects of such a process.14 Indeed, a formally speci�ed

negotiation process can be seen as a speci�c type of work�ow and therefore, the

use of a colored Petri-net based language called OOPAMELA is proposed. Prin-

cipally, OOPAMELA is a description language for colored Petri-nets enhanced by

negotiation speci�c concepts including multiple roles, validation (of o�ers), vot-

ing method, round and timeout handling. In order to facilitate the development

and usage of negotiation protocols expressed in this language, we have developed

a protocol generator which provides support for graphical speci�cation and pa-

rameterization of protocol templates and which can also be used as a persistent

repository of ready-to-use �standardized� protocols.

For example, the graphical speci�cation of an auction protocol template using

the current prototype of the protocol generator is shown in Fig. 3. Using the

14 M. Merz et al.

menu �Con�gurator� of this user interface, a wizard can be started which allows

parameterization of this template like the minimal and maximal number of auc-

tion participants, validation condition for o�ers submitted and timeout for the

transition �makeO�er�.

V er t r agV er t r ag

n e x tO f fe r
m a k e O ff e r[m]

m a k e O ff e r

s a m m eln [m]

B ie te r[M]

v e r tei l e n

a n g e b o t :

V er t r ag

A u k t io n a to r

a n g e b o t [m]:

V er tr ag

a n g e b o tV o n [m] :
a n g e b o te :

f i rs tO f fe r f i rs tO f fe r

A n b ie te r

n e x tO f fe r ()

Fig. 3. Graphical Speci�cation of an Auction Protocol using the Protocol Generator UI.

� Strategy building kit. Regarding negotiation strategies, it can easily be recognized

that they can be based on very di�erent algorithms, ranging from analytical to

evolutionary approaches, or from local to distributed ones, which have all been

proposed for some speci�c negotiation problems.14;15 Moreover, these algorithms

can normally be combined with di�erent types of knowledge bases which can be

exploited to produce a learning e�ect on the computation of negotiation actions,

e.g., o�ers and counter-o�ers, the quality of which can be measured by some

combination of utility functions such as price and quality (of products), time (to

negotiate) etc. Usually, a good negotiation strategy makes use of both general

domain knowledge like market values or branch statistics and speci�c knowledge

like information about concrete negotiators, for example the result of the last

negotiation with the same negotiator on the same issue. Due to this great variety

of potential strategies that can be deployed for a concrete negotiation, a corre-

sponding support service has to provide a generic and dynamic framework which

allows for the use and exchange of strategy implementations based on di�erent

programming paradigms. Currently, in the context of the strategy building kit,

we are developing a hierarchical, event-oriented framework in order to satisfy

these requirements.

In this framework (see Fig. 4), a strategy consists of a coordinator and one or more

Supporting Electronic Commerce Transactions With Contracting Services 15

S-FIFO

schedule()

S-SPT

schedule()

S-Offer S-Accept

1 n
S-Actor

evalSync()
evalAsync()

strategyImpl

S-Coordinator

handleEvent()
schedule()
actorQueue()

Fig. 4. A hierarchical strategy consisting of a coordinator and several concurrent actors.

actors. The coordinator is responsible for the handling of all external events, con-

cerning for example new o�ers submitted by other participants or entry and exit

of participants, and the scheduling of the actors. Each actor provides the im-

plementation of a speci�c algorithm to compute negotiation actions like o�ering

a new contract template or accepting and existing one. Several actors can run

concurrently computing alternative actions which are then evaluated by the co-

ordinator and during the computation, any or all actors can be interrupted by

the coordinator as a consequence of an external event like exceeding the timeout

to provide a counter-o�er.

� Protocol engine. Basically, the task of the protocol engine is interpreting a nego-

tiation protocol which has been generated and completely parameterized (using

the protocol generator) and �supervising� the participants in such a way that

the semantics of the protocol is guaranteed. The interface between the protocol

engine and the participating agents is the protocol module. This is a compo-

nent generated by the engine which can be dynamically plugged into the agent

frame and provides methods to inspect the contents of incoming and outgoing

(relatively to the viewpoint of the respective agent) negotiation messages. The

protocol engine, considered as a work�ow engine (see also Section �Contract Ex-

ecution� below), has to be able to deal with many exceptional situations which

can result from incorrectly speci�ed protocols (e.g., deadlocks), but which can

also be (purposefully) caused by the participants (e.g., trials to deceive, hinder

or bypass the protocol module).

The described mechanisms to enforce protocols assure safety and security in an

automated manner. But since business is always a critical thing in humans� minds,

a realistic infrastruture should provide more �traditional� means of assurance as

well � signatures.

16 M. Merz et al.

5. Electronic Contract Signing

From the legal perspective, contracts don't need to be signed nor even be written.

They become valid even if they are closed orally or by a conclusive deed. I.e.,

when a customer hits the �Buy� button of an electronic shop application, it can

be assumed that the consequences are well-known. On the other hand, there are

several reasons that promote the idea of involving signed electronic contracts into

online transactions:

� A written contract cannot be repudiated. In the case of an electronic contract,

this can be signed by the parties as well as by a trusted third party. This states

who agreed on which terms and at which time. Any arbitration that may be

required among these parties can be settled better if there is a version of the

contract available that has been archived by a neutral auditor.

� The legal framework for online commercial transactions is being established in

several countries now. For example, in Germany, the Regulatory Authority for

Telecommunications and Posts (RegTP, �Regulierungsbehörde�) is responsible for

the licensing of service providers in the �eld of electronic signatures according to

the Signaturgesetz (Signature Act). Under http://www.regtp.de the directive on

digital signatures can be checked in German and in English as well as a list on

technical requirements of the digital signatures. As far as electronic contracting

is concerned, electronic signatures are thus at least accepted as an authentication

means for the document signed. However, the management of a contract still

requires a further harmonization of the national legislation for the participating

countries.

� Complex legal situations can be better �xed by using a document as the common

form of agreement. Today, it is best practice that commercial vendors display

their terms and conditions as a part of their online presentation. However, it

would clarify the legal situation if these documents are not displayed transitionally

on the Internet but if they could be escrowed and archived at a third party (e.g.

a notary). This would allow the contracting parties to refer to this document

even a long time after it has been replaced by a new one.

� Furthermore, some contracts may be negotiated and closed that require too com-

plex speci�cations such that it is essential to handle them in written form as

a shared document. This applies to project workplans as well as to complex

relationships for obligations and rights within multilateral agreements.

� In contrast to paper-based contracts, their electronic counterparts could be exe-

cutable. Structurally, such contracts incorporate clauses that determine the obli-

gations and rights of each party. From the technical point of view, this can be

interpreted for many contracts as an activity or a service that is to be provided at

a certain time (payments, delivery of a good or a report, translating a document,

or printing, binding and delivering books). Therefore, the execution phase of the

commercial transaction is not only interpreted in the legal sense as the execution

of a contract, but speci�cally in a technical sense by invoking the corresponding

service through remote method invocations.

Supporting Electronic Commerce Transactions With Contracting Services 17

6. Electronic Contract Execution

Up to now the monitoring and the execution of the agreed terms in a contract

are, in many cases, a time consuming and complex task that probably bears one

of the highest potentials in cutting costs. However, electronic contract execution

is not available in current E-commerce infrastrucutres. These are reasons why the

COSMOS system does not only support the creation, negotiation and signing of

contracts, but also their automatic execution.19 The following subsections brie�y

depict some of the key aspects of the on-going COSMOS project that aims at

establishing such a complete infrastructure.20

6.1. The COSMOS Contract Model

In the common case of a printed contract, the document contains all the information

about its execution in a format that is usually not machine-readable. The duties

and rights of the parties, the schedule of the performance and the identities of the

involved parties: all this currently needs to be extracted and interpreted by humans.

In many cases, even experts are needed to evaluate a contract.

Basis for an automatic contract execution is its machine readability. Using an

electronic contract format o�ers the chance to create a contract model that may be

easily interpreted by computers to supervise its ful�lment.

The COSMOS architecture has been considering this from the very beginning.

As a part of the system, a contract model has been developed that can be used to

represent most types of contracts between n parties.7 This model allows an easy

extraction of the contract's work�ow information. Consequently, the information

gathered within the contract during earlier phases directly allows to derive a work-

�ow to execute a contract.

For a better understanding of how work�ow information is included in a con-

tract, we depict our contract model: from an abstract point of view the work�ow

information can be found in the three main components (see Fig. 5) of a contract:

� The Who-part de�nes the involved parties, their roles and the persons represent-

ing the parties.

� The How-part describes the execution steps of the contract by a number of ac-

tivities that have to be accomplished.

� The What-part contains the information about the contract's subject. It de�nes

the obligations to be brought forth.

Taking a closer look, these contract components can be seen under the following

relationships:

Each activity de�nes one step of the contract execution and refers to two roles:

one represents the group of the receivers of a number of obligations and the other

characterizes the group of parties having to perform these obligations. Each party

embodies one or more persons, the people who signed the contract and who are

responsible for its ful�lment. Furthermore, the person objects can contain informa-

18 M. Merz et al.

tion on how to contact the person or his work�ow system, so the de�ned activities

may be initiated.

This object-oriented contract model allows to de�ne di�erent attributes of ac-

tions like the time, pre- or postconditions of single execution steps. Moreover, ac-

tions may relate to each other, e.g. the transfer of a payment may only be initiated

after a good has arrived.

Contract

Execution Subject

Obligation 1

Who What

Activity 1

How

Obligation 2

Obligation 3
Activity 2

Person 2

Party 1

Person 1

Obligation 4

Party 2

Role 1

Role 2

Fig. 5. Main Components of an Electronic Contract.

6.2. The COSMOS work�ow engine (CWE)

The component of the system responsible for the contract execution support is the

COSMOS Work�ow Engine (CWE). It consists of several parts and provides three

di�erent contract execution models.

The �rst task of the CWE is to gather the work�ow information from a signed

contract. A Petri-net like representation is used to represent the work�ow informa-

tion inside the CWE (see also section).

In the next step, the system relates each activity to the kind of contract execu-

tion support the particular user prefers. This information is de�ned in the person

object. Also persons registered in the pro�le database may store information on

their business applications in business object adapters.21 Here everyone can de�ne

an own business object adapter that gives the CWE the possibility to communicate

with the user's business application.22

To help users to de�ne a speci�c contract execution, the system supports them

by o�ering speci�c contract templates. It is also possible to de�ne several elements

of the contract execution within an o�er already.

6.3. Models of contract execution

The COSMOS infrastructure provides three di�erent models of electronic contract

execution (see Fig. 6). They di�er in the degree of automation. The appropriate

model is depending on the contract's nature and the given infrastructure of the

parties involved in the contract.

Supporting Electronic Commerce Transactions With Contracting Services 19

interprets

Electronic Contract

Executable Contract

Application User
Business Application

Business Application

Business ApplicationParser, Workflow Engine

controlscontacts

migrates and controls

controlscontacts

Textual Contract

CWE

Fig. 6. Three Models of contract execution.

� In the elementary case, deadlines and periods of contract obligations may be

extracted by the CWE to generate e-mail noti�cations. These messages refer to

the actions the parties agreed on, e.g. initiating a payment or performing an

action. The e-mail itself contains all necessary information the user needs. If

appropriate, the e-mail may contain a link to an applet that shows the contract's

execution status, or which helps the user to ful�l his task. For example if a

payment has to be done, a link to the home banking application may be provided.

We call this the supportive work�ow system model.

� At a more sophisticated level, the CWE interprets the contract on a central server

which can directly contact the work�ow systems of the participating parties. In

this case, the CWE is an abstraction of an usual work�ow system which has

adapters to di�erent work�ow product environments. Single activities triggered

by the work�ow engine are mapped to data messages or method calls of the

participating business objects (BOs) extracted from the contract. Since these BOs

were originally issued by companies o�ering their services to the catalogue service,

each BO �knows� its interface to an individual company's environment. Thus, the

contract components are able to directly contact and drive a company's work�ow

system in a consistent and correct manner. For example, a necessary payment in

the work�ow would cause an invocation of the company's �nancial management

software, �ll out an �electronic form� and initiate the payment process. For the

communication between the CWE and di�erent work�ow system types, an XML,

as well as an EDI and a CORBA-interface, are under development.20 In this

scenario, the work�ow control is centralized at the CWE, therefore we call this

approach the integrative automated approach.

� The third model attempts to support the contract execution on a distributed

basis. In this case, the work�ow is not controlled by the CWE directly, but

20 M. Merz et al.

the CWE generates a number of agents which are migrated to the participants�

computers where they control the ful�lment of the contract independently. These

agents can be considered as an active version of the contract. They contain the

methods and the information necessary to perform certain actions of the contract

work�ow, but usually no textual paragraphs are attached.

Several specialized agents may be created, which migrate to di�erent contract

partners. These programes can communicate with each other to control the cor-

rect order of the actions. After having carried out one action, the agent may even

migrate to an other work�ow system assuring a speci�c order if necessary. At

this stage, the centralized CWE is no longer a full-�edged service, why we call

this scenario the distributed work�ow system approach.

Each of these approaches bears di�erent potentials and problems. We are evaluating

all three models in practice, in order to �t the needs of a wide range of users and

to explore new system techniques.

Especially the third approach seems to bear several advantages (although it

is the most sophisticated), as the interactions necessary for a contract execution

are highly distributed by nature. This approach requires the ability of objects to

migrate over the network as well as some infrastructure that can receive and store

these migrated objects, but it avoids the client-server bottleneck of the integrative

approach.

The distributed model is based on Object-Space's Voyager technology23 and

Sun's JavaSpaces.24 Voyager is used for the migration of objects as well as for re-

mote communication and messaging. JavaSpaces serves as an asynchronous message

bu�er and storage mechanism in a distributed environment. Participating servers

need to provide a Voyager demon and JavaSpaces both being software with a very

small footprint. But companies do not need to have established their own internal

work�ow system. They simply provide the business objects that should be deployed

during a contract�s execution.

Still, with all three approaches humans may have (the wish) to read the con-

tract. Although the COSMOS system uses one contract model for all kinds of

contracts, di�erent types of presentations may be selected. This is achieved by an

XML-representation of the contract�s object model and di�erent (eXtensible Style

Language) XSL-De�nitions which are used to display or print a contract.

For the integrative automated and the distributed model, security is a big issue.

Avoidance of abusing the provided interfaces and keeping unauthorised agents away

is assured by every company using the system being able to create their own business

object adapters and save them with their pro�le information in the cosmos pro�le

database acting as a trusted third party.

We also provide a component model that helps the users to create a contract from

a set of pre-de�ned components. The following section re�ects on the in�uence of

the recent component-oriented software discussion to our infrastructare in general.

Supporting Electronic Commerce Transactions With Contracting Services 21

7. Component-Software

Services o�ered in an open and heterogeneous environment such as an Internet-

based electronic contracting service can only be competitive if they are �exible

enough to adapt to a wide variety of user as well as technical requirements. There-

fore, appropriate techniques are needed to (re-) con�gure an o�ered service dynam-

ically according to the e�ective requirements in each case. For example, regarding

the involvement of so-called �third party� services � such as payment and notary

functions � during a business-to-business transaction, as many options as possible

should be supported and moreover, an option common to all transaction parties has

to be determined and activated.

A very generic approach to provide system support for such kind of dynamic

service con�guration consists of using policy management mechanisms, which pro-

vide a formalization of arbitrary requirements in terms of policies which can be

evaluated, compared, matched (or uni�ed) and activated in an application inde-

pendent way.16 Policies can be added and activated fully automatically at run-time

without changing the application code. The con�guration e�ect is achieved by mod-

ifying externally accessible properties which are used as system parameters by the

applications.

In a broader sense, �exible service con�guration also means that arbitrary ser-

vices should be so con�gurable that they can be easily plugged together to yield

new functionality, i.e. that they can be used as building blocks to assemble new

services �on the �y�. Providing technical support to ful�ll this kind of requirements

is precisely the objective of componentware techniques which seem to be the right

means to face the growing challenges in the �eld of electronic commerce, especially

concerning the requirement of dynamic adaptability.17 However, there are still a

lot of open questions and unsolved problems � for example, the composition of an

application system out of components has to be distinguished from the generation

of a new component out of existing ones since they have to ful�ll, among other

things, very di�erent performance requirements � which are currently being inves-

tigated in projects such as DynamiCS in order to make componentware technology

applicable in practice.18

The notion of componentware17;30 as a means to describe software systems con-

sisting of loosly coupled modules with clearly de�ned interfaces has a variety of

aspects that makes it worth to be considered as an architectural as well as a con-

ceptual base for a complex E-commerce infrastruture.

Usually, reuse is emphasized as the main advantage of a component-oriented

view on software.27;28 But this still has to be proven in everyday�s application

programming and we will not discuss this issue here in any detail. Nonetheless, the

COSMOS system as an electronic contracting platform has several points at which

meaningful and successful reuse of existing components occurs quite naturally. For

example, the �rst couple of sections above demonstrated the deployment of broker

mechanisms as well as that of the so-called contract editor within di�erent phases of

the construction and ful�lment of a contract. Here, the tools and service components

22 M. Merz et al.

are (re-)used in di�erent situations at some time with at other times even without

human interaction.

Aside from reuse, the strutural aspects of componentware seem to be promising

for a large scale software system with di�erent and changing needs at di�erent

places. Decomposing � or to say it the bottom-up way, building up � a system�s

architecture into separated components allows better and more suitable design of

the overall system, particularly in the case of a highly distributed system, since these

are loosely coupled in a natural way. But again, this is a long and well treated topic

in literature not being considered in-depth here.25;26

We are not going to discuss methodological aspect of applying component-based

software either.29 Rather, we like to stress the multiple levels of abstraction com-

ponents occur within our contracting infrastructure. First, there clearly are the

�building blocks� like the broker, the contract editor, or the work�ow engine. Sec-

ond, there are components identi�able at a more �ne-grained level, in particular the

protocol and strategy modules for the negotiation suppport (see section). The third

� and from a certain point of view most important � level of components are the

aforementioned business objects that our architecture deploys for service pro�ling,

within contract templates and during the work�ow-like execution of a contract.

In fact, the notion of business objects21 � usually de�ned as �the objects being of

importance to a business (process)� � can be seen as an intermediate step between

the concepts of object�orientation and component-software. This holds particularly

if one stresses their encapsulating and rei�cating character making them �black-box�

units of deployment and representation within a business.

Section describes the features of a catalogue service as it is deployed by a system

infrastructure like COSMOS. The concept of a catalogue includes the notion of

relating one (searchable) entry to another one. As a result, a simple name-value pair

representation will be su�cient for most catalogues. This provides the addtional

advantage of simplicity (of implementation). But the description of advanced service

mediation (section) and service execution (section) should have made clear that

more information is needed for such highly automated mechanisms.

Therefore, we adopt the notion of business object adaptors from OMG�s BOCA21

to abstract from simple name-value pairs to components comprising full business

objects, including code for their later usage during contract ful�lment, for example.

Using adaptors avoids to force the system infrastructure or its users (companies) to

deploy full support for (distributed) object-orientation � OODBs for example �

and the handling of complex technologies, but still o�ers the opportunity to do so

� particularly in the future. We have described the details of this adaptation.22

We like to conclude by pointing out what we think is the most important is-

sue of componentware in the context of a large scale E-commerce infrastructure:

to summarize it is all about evolution, longevity, and maintainability. In some

of the advanced stages of a project like COSMOS when we had to decide what

technologies (e.g., communication layer, programming language etc.) to deploy the

discussion arose if whatever technology we elect � would it survive long enough to

Supporting Electronic Commerce Transactions With Contracting Services 23

support contracting scenarios that even may run for years (think of global business-

to-business settlements). The outcome of this discussion was the demand for an as

�exible, con�gurable and customizable system architecture as possible making it an

evolutionary infrastructure.

This is especially important, since E-commerce should not repeat the old mistake

of businesses basing their key processes on the deployment of monolithic, ever-

growing software systems that hardly can be maintained. The world-wide emerging

E-business has to avoid itself needing to be �re-engineered� in future years.

Therefore, our technologies our accompanied by supporting services like traders,

policy- and type-managers that allow for customization and inspection of meta-level

information even at a system�s run-time. Also, upgrading and substitution of single

parts in the system becomes possible.17 The notion of software components is highly

advantageous here, because a component is seen as a pre-con�gured but still cus-

tomizable piece of software: the component developer has included precisely de�ned

variation points a later user (or application level programmer) may customize to

her needs without the danger of inconsistencies or failure of the system as a whole.

By giving automated mechanisms access to this customization we end up with a

self-controlled system assuring the maintainability, stability and robustness as one

expects (or demands) of a business-critical infrastruture.

8. Conclusion and Outlook

In this paper, we have presented an overview of system technology concepts that

will allow and ease the establishment of complex electronic commerce infrastruc-

tures. In particular, we outlined aspects of a system capable of supporting electronic

contracting including all phases from information gathering (�nding business part-

ners), negotiation (coming to terms with the partners) and the ful�lment of the

resulting obligations (contract performance).

Our aim was to demonstrate the possibility of harmonic combination of simple,

well-known existing technologies with advanced concepts and system and applica-

tion level services being still under research. We strongly believe that such a combi-

nation added to today�s open distributed networked computing environments will

allow even small and medium companies (or even single persons) to participate in

tomorrows global electronic market without being hindered by high set-up costs, the

demand for complex infrastructures or the need of detailed technical, economical or

legal (possibly international) knowledge.

To achieve such a complete architecture, we have to consider features of quite

a couple of di�erent information technology areas, ranging from type theory, dis-

tribution, negotiaion, user interface design to componentware. We have gained a

lot of experience in these areas during di�erent projects we brie�y introduced in

this article. There exists a good number of proof-of-concept prototypes of all the

mentioned techniques right now. Nonetheless, our main duty in future will be the

smoothless integration of all these parts into a sound and applicable system being

real �commercial of the shelf� (COTS) software. We consider this �nal step (and

24 M. Merz et al.

of course its �eld tests under real-world conditions) as essential for an architecture

that claims to support business.

Acknowledgements

The projects that led to the work presented here are funded by the European Com-

mission (Esprit Project #26850) and the German Research Council (DFG Project

La1061/1�1).

References

1. Z. Milosevic, Enterprise aspects of open distributed systems, PhD Thesis, University

of Queensland, Australia, October 1995.

www.dstc.edu.au/AU/staff/zoran-milosevic.html

2. Electronic Commerce Homepage of the European Commission:

http://www.ispo.cec.be/ecommerce

3. B. F. Schmid and M. A. Lindemann (eds.), Proceedings of the 31st Annual Hawaii

International Conference on Systems Science, HICCS'98, Hawaii, January 1998, IV

(19998) 193-201.

4. ISO/IEC, ITU-T Rec. X.950 | ISO/IEC 13235{1 | ODP Trading Function |

Speci�cation, International Standard, International Standards Organisation, ISO/IEC

JTC1/SC21, December 1997.

5. AT&T, DSTC, DEC, HP, ICL, Nortel, and Novell, Trading Object Service, OMG Doc-

ument No.: orbos/96-05-06, Version 1.0, 1996.

6. Onyx Internet Ltd. Tradezone, http://www.tradezone.onyx.net

7. M. Merz, B. Liberman, E. Wol�, M. Boger and H. Weinreich, COSMOS Deliverable

D2 { Reference Architecture, Project Deliverable, (University of Hamburg and Ponton

Hamburg, 1998)

8. P.A. Bernstein, Middleware { An Architecture for Distributed System Services,

CRL 93/6, Digital Equipment Corporation, Cambridge Research Lab, 1993.

9. L. Cardelli and P. Wegner, On Understanding Types, Data Abstraction, and Polymor-

phism, in ACM Computing Surveys no.4, vol.17, 471{522, Dec. 1985.

10. K. Mueller{Jones, M. Merz andW. Lamersdorf, The TRADEr: Integrating Trading Into

DCE, in Proceedings of the 3rd IFIP TC6 Conference on Open Distributed Processing,

ICODP'95, eds. K. Raymond and L. Amstrong, Chapman & Hall, Brisbane, Australia,

1995.

11. K. Mueller{Jones, Koordinierte Dienstnutzung in o�enen verteilten Dienstemaerkten,

PhD Thesis, University Of Hamburg, September 1996.

12. S. Mueller, K. Mueller-Jones, W. Lamersdorf and T. Tu, Global trader cooperation

in open service markets, in Proc. Workshop Trends in Distributed Systems: CORBA

and Beyond, eds. O. Spaniol, C. Linho�-Popien, B. Meyer, Lecture Notes in Computer

Science 1161 (Springer, Heidelberg, 1996) 214{227.

13. Chalupsky, T. Finin, R. Fritzson, D. McKay, S. Shapiro, G. Wiederhold, An overview of

KQML: A knowledge query and manipulation language, Technical Report, April 1992.

14. M. T. Tu, F. Gri�el, M. Merz, and W. Lamersdorf, A plug-in architecture providing

dynamic negotiation capabilities for mobile agents, in Proc. 2nd International Workshop

on Mobile Agents, MA'98, Stuttgart, eds. K. Rothermel and F. Hohl, Lecture Notes in

Computer Science (Springer, Berlin, Heidelberg, New York, 1998).

15. C. Beam and A. Segev, Automated negotiations: A survey of the state of the art,

Negotiation and Collaboration in Electronic Commerce Project Document 96-WP-1022,

Berkeley, 1997. http://haas.berkeley.edu/~citm/nego-proj.html

Supporting Electronic Commerce Transactions With Contracting Services 25

16. M. T. Tu, F. Gri�el, M. Merz, and W. Lamersdorf, Generic policy management for open

service markets, in Proc. IFIP International Working Conference on Distributed Appli-

cations and Interoperable Systemes, DAIS'97, eds. H. Koenig and K. Geihs (Chapman

& Hall, London, Weinheim, New York, 1997) 211{222.

17. F. Gri�el, Componentware (dpunkt-Verlag, Heidelberg, 1998).

18. DynamiCS Project Home Page:

http://vsys-www.informatik.uni-hamburg.de/projects/dynamics/index.phtml

19. F. Gri�el, T. Tu, M. Muenke, M. Merz, W. Lamersdorf, and M. Mira da Silva, Electronic

contract negotiation as an application niche for mobile agents, in Proc. 1st International

Workshop on Enterprise Distributed Object Computing, October 1997.

20. COSMOS Project Home Page: http://www.ponton-hamburg.de/cosmos

21. Object Management Group, CORBA BOCA { Business Object Component Architec-

ture, Speci�cation, OMG Document Nr. bom/98-01-07, 1998.

22. M. Merz, F. Gri�el, S. Mueller-Wilken, and W. Lamersdorf, Electronic contracting

with COSMOS | how to establish, negotiate, and execute electronic contracts on

the internet, in Proc. 2nd International Workshop on Enterprise Distributed Object

Computing, San Diego, Nov. 1998.

23. ObjectSpace, Voyager | Core Technology User Guide, 1997

http://www.objectspace.com/voyager/documentation.html

24. http://chatsubo.javasoft.com/javaspaces, 1998.

25. D. Krieger and R. M. Adler, The emergence of distributed component platforms, IEEE

Computer 3 (1998) 43{53.

26. D. L. Parnas, On the criteria to be used in decomposing systems into modules, Com-

munications of the ACM 15 (1972) 1053{1058.

27. J. Sametinger, Software Engineering with Reusable Components, (Springer, 1997).

28. I. Jacobson, M. Griss, and P. Jonsson, SOFTWARE REUSE | Architecture, Process

and Organization for Business Success, (ACM Press / Addison{Wesley, 1997).

29. P. Allen and S. Frost, Component-Based Development for Enterprise Systems, (Cam-

bridge Univ. Press, New York, 1998).

30. C. Szyperski, Component Software | Beyond Object{Oriented Programming,

(Addison{Wesley, 1998).

31. S. Adler, W. Lamersdorf, M. Muenke, S. Ruecker, H. Spahn, U. Berger,

A. Brueggemann-Klein, and C. Haber, Grey literature and multiple collections in

NCSTRL, in Digital Libraries in Computer Science: The MeDoc Approach, eds.

A. Barth, M. Breu,A. Endres, A. de Kemp, Lecture Notes in Computer Science 1392

(Springer-Verlag, Berlin Heidelberg, New York, 1998) 45{170.

32. Commerce Net Home Page: http://www.commerce.net

33. F. Gri�el, T. Tu, W. Lamersdorf (eds.), Electronic Commerce (dpunkt-Verlag, Heidel-

berg, 1998).

34. http://www.ibm.com/Java/Sanfrancisco/technical.html, 1998.

35. W. Lamersdorf and M. Merz (eds.), Trends in Distributed Systems for Electronic Com-

merce, Lecture Notes in Computer Science 1402 (Springer-Verlag, Berlin, Heidelberg,

New York, 1998).

36. S. Mueller, K. Mueller-Jones, W. Lamersdorf and T. Tu, Global trader cooperation

in open service markets, in Proc. Workshop Trends in Distributed Systems: CORBA

and Beyond, eds. O. Spaniol, C. Linho�-Popien, B. Meyer, Lecture Notes in Computer

Science 1161 (Springer, Heidelberg, 1996) 214{227.

37. S. McConnell, M. Merz, L. Maesano, and M. Witthaut, An open architecture for elec-

tronic commerce, OMG/ECDTF/OSM Response, 1997.

