
Chapter 1

The Jadex Project: Programming Model

Alexander Pokahr, Lars Braubach, and Kai Jander

Abstract

This chapter describes the priciples of the Jadex programming model. The
programming model can be considered on two levels. The intra-agent level
deals with programming concepts for single agents and the inter-agent level
deals with interactions between agents. Regarding the �rst, the Jadex belief-
desire-intention (BDI) model will be presented, which has been developed
for agents based on XML and Java encompassing the full BDI reasoning cy-
cle with goal deliberation and means-end reasoning. The success of the BDI
model in general also led to the development goal based work�ow descrip-
tions, which are converted to traditional BDI agents and can thus be executed
in the same infrastructure. Regarding the latter, the Jadex active components
approach will be introduced. This programming model facilitates the interac-
tions between agents with services and also provides a common back box view
for agents that allows di�erent agent types, being it BDI or simple reactive
architectures, being used in the same application.

1.1 Introduction

This chapter is one of two chapters describing practical applications built with
the Jadex agent framework. The applications are structured according to the
main features of Jadex that were required for building these applications.
In this chapter, the focus is on features regarding the programming model of
Jadex. Therefore, this chapter is subdivided into three thematic sections that
cover di�erent programming model aspects and applications. Each section
starts with a short background about why a certain topic was considered

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg
{pokahr | braubach | jander}@informatik.uni-hamburg.de

1

2 Alexander Pokahr, Lars Braubach, and Kai Jander

important for programming in Jadex, followed by a more general motivation
about the relevance of the concept itself. A related work section is presented
for each concept, trying to give an overview of the �eld with pointers to other
relevant works in the area. Afterwards the approach as implemented in Jadex
is covered in detail and further illustrated by example applications that have
been built. Each section closes with a short summary.

In particular, the following topics are described in this chapter. Section 1.2
discusses the behavior model of agents which, in Jadex, was initially realized
according to the belief-desire-intention (BDI) model that was extended for
Jadex in several substantial ways. With work�ows, Section 1.3 addresses an
interesting application area for agents regarding the support of e.g. complex
and dynamic business processes. The last topic in Section 1.4 is called active
components and introduces a uni�cation of agent concepts with concepts
from service- and component-based software engineering. Finally, Section 1.5
summarizes the chapter and identi�es important challenges with respect to
the programming model that remain to be tackled for promoting industrial
take-up of agent technology.

1.2 Agent Programming: BDI Architecture

The ever increasing computational power causes an ever increasing complex-
ity of software systems. The tasks performed by computer systems become
more and more advanced including e.g. automating complex processes or
providing intelligent support for humans during their execution of activities.
Engineering science strives to develop new concepts, methods and tools for
dealing with the increasing complexity of systems. All systems are ultimately
built by humans for humans. Therefore, ideas from disciplines like philosophy
or psychology have been applied to engineering for better supporting the pro-
cess of comprehension of typical human system engineers and human system
users. One well known example is the so called Intentional Stance coined by
Daniel Dennett [23]. When applied to software systems, it allows considering
system components as intentional entities that have certain responsibilities
with respect to local and overall system goals and that act rationally and in-
dependently of each other towards achieving these goals. This approach �ts
well to the way how humans conceive their own thinking processes (a.k.a.
folk psychology) and thus simpli�es reasoning and discussing about system
designs.

Intentional approaches haven proven useful early on, for example with re-
spect to goal-driven requirements engineering [21]. When considering more
and more complex systems, where typically autonomous and/or adaptive be-
havior is required from the system's components, it becomes apparent that
intentional notions such as goals and rational action are useful also for im-
proving system design and implementation. An intentional approach simpli-

1 The Jadex Project: Programming Model 3

�es tracing requirements to design and implementation artifacts, as each are
based on the same mental model of responsibilities, system goals and ratio-
nal action. As an additional advantage, systems start to �behave like humans
would do�, i.e. they behave understandably according to the mental models
of system designers and system users. This further simpli�es, e.g. debugging
of the system and leads to an intuitive usage.

1.2.1 Related Work

The term agent architecture is used to describe the concepts and constructs
for specifying behavior. In this respect between internal and social agent ar-
chitectures is distinguished. The �rst refers to architectures that deal with
concepts for programming a single agent while the latter are concerned with
how group behavior and teamwork can be described and programmed. With
regard to di�erent application contexts, simple or complex agent architec-
tures may be better suited. Figure 1.1 shows an overview of well-known agent
architectures. The �gure highlights how the architectures are in�uenced by
theories from di�erent disciplines, such as philosophy and psychology. E.g.
the agent architectures AOP [47], 3-APL [22], IRMA [5] and PRS [44] in-
corporate the Intentional Stance and are therefore related to philosophical
theories like the belief-desire-intention (BDI) model. Theories from the �eld
of psychology focus on lower-level cognitive processes such as learning and
have led to architectures like SOAR [30] that largely di�er from those that
originate from philosophical theories. For social architectures that focus on
coordination in multi-agent systems, organization theory and sociology have
been sources of inspiration, e.g. the Joint Intentions theory [19] as incorpo-
rated in the Joint Responsibility model [27]. Finally, the Subsumption archi-
tecture [13] is a biologically inspired architecture for building simple reactive
insect-like agents.

The BDI model [4] is a good trade-o� between complexity and expressive-
ness as it is based on a simple set of intuitive concepts with a natural meaning
(e.g. beliefs representing the knowledge of an agent about the world). The
�rst implemented system based on a BDI-like model was the procedural rea-
soning system PRS [24]. The mapping to BDI was later made explicit and
formalized in [44]. A number of successor systems have transported original
PRS ideas to newer runtime infrastructures, e.g. the Java-based JAM [25]
and the commercial JACK [17]. In addition, with AgentSpeak(L) a BDI-
style programming language has been proposed in [43], which is supported
by interpreters such as Jason [3].

4 Alexander Pokahr, Lars Braubach, and Kai Jander

Fig. 1.1 Agent architectures (from [12])

1.2.2 Approach

The Jadex BDI architecture has been conceived and realized with concep-
tual as well as technical goals in mind. Conceptual aim was developing an
agent behavior model that intuitively resembles human decision making. This
model should act as a blueprint (pattern) for commonly found problems in
agent systems. The Jadex BDI agent architecture thus provides ready to use
functionality and reduces the need for manually coding aspects of the agent
behavior.

On a technical level the idea is making agents more close to mainstream
programming. Therefore, the realization makes use of established technologies
like Java and XML. This facilitates the integration with existing technologies,
3rd-party libraries and legacy systems and further allows developing agent
applications using existing development environments.

1.2.2.1 Goal Representation and Processing

The Jadex BDI architecture comprises several aspects of agent behavior and
development support. In the following, the basic goal-based behavior model
will be described. Put simply, it allows de�ning agent behavior in terms of
goals to be achieved and plans to be executed towards achieving the intended
goals. The behavior model is based on the means-end reasoning process found
in earlier PRS systems. These realize a reactive planning approach as follows:

1 The Jadex Project: Programming Model 5

Given a goal or event, the agent will choose a plan from a library of procedural
plans and execute the plan in a step-by-step fashion. Each plan speci�cation
incorporates one or more triggering events, i.e. goals for which the plan may
be applicable. If the plan succeeds (i.e. completes without error), the goal
is considered achieved. Otherwise the agent may choose another plan from
the plan library and start over. The PRS reasoning cycle is well-suited for
realizing adaptive behavior as plans are selected based on their applicability
to the current situation. An agent can react to changing environments by
simply retrying with a di�erent plan. Furthermore, the PRS approach facil-
itates an extensible system design, as new plans can be added to the plan
library without the need of touching other parts of the agent code.

Goal Lifecycle

In PRS, goals are only considered as ephemeral events. Jadex extends the
PRS model by introducing a lifecycle for goals that allows treating goals as
�rst class programming concepts [11]. The goal lifecycle is depicted in Figure
1.2 in an extended state-chart notation. The rounded rectangles represent
the possible lifecycle states of a goal and the arrows indicate the possible
transitions between the states. A goal can be created (state New) as a pro-
gramming construct to con�gure its contents before making it accessible to
an agent. Once the goal is adopted, the agent is aware of the goal such that
it may in�uence the agents behavior. To simplify dealing with many goals
at a time, three substates of the adopted state are introduced. Only active
goals are currently pursued following the PRS reasoning approach described
above. Goals may be suspended, when they cannot be pursued, e.g. due to
external conditions. Furthermore, goals can be options, when their processing
is delayed, e.g. in favor of other more important goals. To stop the agent from
working on a goal, a goal may be dropped, putting the goal in the �nished
state.

The transitions between goal states can be performed manually by the
agent programmer (e.g. writing code in a plan to create or suspend some
goals). Additionally, the goal speci�cation can be equipped with declarative
conditions to indicate situations, when state transitions should happen auto-
matically. These are shown in the �gure as note boxes. The creation condition
leads to the creation of new goals, which are initialized with contents accord-
ing to the condition (e.g. the creation condition might state to create a new
goal for each new item observed by the agent) and directly adopted by the
agent. The context condition controls in which of the substates of the adopted
state a goal is in. When the context is valid, the goal becomes an option and
may be activated. Otherwise, the goal is automatically suspended. In some
situations it is useful to stop processing of a goal, even when it is not achieved
(e.g. when a goal has become obsolete). Such situations can be declaratively
speci�ed using the drop condition.

6 Alexander Pokahr, Lars Braubach, and Kai Jander

Fig. 1.2 Goal lifecycle (from [11])

Goal Kinds

The goal lifecycle as introduced above facilities the management of goals
as a �rst class programming construct. Yet, it does not further clarify the
semantics of the goal itself, i.e. how an agent should behave according to
its currently active goals. Therefore, the active state is further re�ned in
di�erent goal kinds. In the literature, many kinds of goals can be found [11]
and a common classi�cation considers goals as a speci�cation of a world state
and an intention towards this world state (e.g. achieve, maintain, avoid, . . .).
Jadex supports four goal kinds, which cover a wide variety of usage patterns.

The perform goal is the simplest goal type and comes close to the original
PRS semantics. The goal tries to execute all applicable plans, succeeding if
at least one plan could be found. The achieve goal speci�es a desired world
state as a so called target condition. The goal succeeds, when the target
condition is ful�lled, regardless if plans have been executed or not. Thus,
the success of a perform goal only depends on the availability of plans while
the success of an achieve goal is only related to the world state. Therefore,
the former is often called a procedural goal, while the latter represents a
declarative goal. Another common kind of declarative goal is the maintain
goal. Unlike the achieve goal, which describes a state to be achieved only
once, a maintain goal intends to keep a state after it has been achieved.
Therefore, every time the state is violated plans are executed for re-achieving
the state. A maintain goal is never considered succeeded and is thus only
dropped, when explicitly requested by the agent programmer or the optional
drop condition. The �nal goal kind is the query goal. It is similar to an
achieve goal with the di�erence that the target condition does not represent
a potentially external world state, but instead demands some information
from the agent's beliefs. If the information is readily available, no plans need

1 The Jadex Project: Programming Model 7

to be executed. Otherwise, the executed plans are expected to lead to the
adoption of the required information as beliefs.

1.2.2.2 Goal Deliberation

The goal representation described in the previous section allows for dealing
with multiple goals at once. Following the goal lifecycle one can in�uence the
order in which goals are processed by moving goals between the option and
active state. The mechanism of selecting goals to actively pursue is called
goal deliberation strategy. While such a strategy can also be implemented
manually, Jadex provides a default deliberation strategy that allows an in-
tuitive speci�cation and covers many recurrent application cases [41]. The
so called �easy deliberation� strategy is based on two concepts: a cardinality
to restrict the number of active goals of a given type and inhibition arcs to
de�ne a partial order of importance between goals.

Both concepts allow a developer to take a local perspective when writing
goal speci�cations. The cardinality is concerned only with a single type of
goal. The inhibition arc expresses a local con�ict or precedence between two
types of goals. It speci�es that the �rst goal �inhibits� the second, meaning
that if both are options the �rst may become active. Inhibition arcs can be
speci�ed on the type level or on the instance level. A type level inhibition arc
means that as long as one goal of the �rst type is active no goal of the second
type may be pursued. An instance level inhibition arc contains an expression
restricting to which speci�c goal instances the arc applies. This allows also
drawing arcs between two goals of the same type and establishing an order
for goal processing based on goal properties.

1.2.2.3 Capabilities

An important concept in software engineering is modularization as it allows
reducing system complexity by decomposition in software modules, which
can be to some extent treated (e.g. designed, implemented, tested, . . .) in
isolation. The BDI architecture as such does not support modularization with
regard to a single agent. Although plans can be developed independently of
each other they typically require access to global data structures like the
agent's beliefs. The capability concept, initially proposed by Busetta et al. in
[16], allows grouping BDI elements (e.g. beliefs, goals and plans) pertaining
to a speci�c functionality into a separate module. The agent implementation
can then be composed of existing modules. The concept has been adopted
and extended for Jadex [10].

The extensions concern important software engineering aspects like pa-
rameterization, which allows external con�guration of existing capabilities
for making them applicable to di�erent usage contexts, and dynamic compo-

8 Alexander Pokahr, Lars Braubach, and Kai Jander

sition, i.e. the addition and removal of capabilities during the life time of an
agent. Another important extension is a generic import/export mechanism
that allows establishing relationships between elements from di�erent capa-
bilities without violating module independence. Therefore one may specify
plans that are triggered in response to goals from other capabilities and also
establish inhibition arcs for goal deliberation across capabilities.

1.2.2.4 Goal-oriented Interaction protocols

The concepts that have been described until now have only considered the
(intelligent) behavior of a single agent. In multi-agent systems the interaction
between agents, typically based on asynchronous message exchange, also plays
an important role. Therefore the question arises how the internal behavior can
be linked to the external communication. As a manual approach one can send
messages directly in plans. The disadvantage is that the complete code for a
potentially complex negotiation needs to be placed in a single plan leading to
poorly maintainable code. The concept of goal-oriented interaction protocols,
proposed in [6], allows capturing agent intentions pertaining to interactions.
The concept allows making use of deliberation and goal/plan decompositions
for interactions as well.

The general approach de�nes a process for analyzing an interaction proto-
col, which describes the allowed sequences of messages, and attaching goals
to each role in the interaction. Based on such an interaction speci�cation,
the developer can simply de�ne separate plans for the activities and deci-
sions required during an interaction. Besides the general approach, several
ready-to-use goal oriented interaction speci�cations are included in Jadex
that implement standardized interaction patterns like Dutch or English auc-
tion and contract-net negotiations.

Figure 1.2.2.3 shows the result of the protocol analysis for the contract-net
protocol. The left hand side represents the initiator role of the negotiation
while the right hand side illustrates the behavior of each of the potentially
many participants. The relationship between the domain layer (i.e. business
logic) and protocol layer (i.e. exchanged messages) is captured in a number
of goals, which may be posted or handled at each role. The domain layer of
the initiator role starts the interaction by creating the achieve cnp_initiate
goal. During the negotiation, the query cnp_evaluate_proposals goal is cre-
ated by the initiator's protocol layer and needs to be handled in the domain
layer. When the negotiation ends, the result is made available as success
or failure of the cnp_initiate goal, such that the initiator domain layer can
proceed appropriately. At the participant side all goals are created automat-
ically in the protocol layer. The participant's domain layer handles the query
cnp_make_proposal goal to generate an o�er to be sent to the initiator. In
case a participant's o�er is accepted, the achieve cnp_execute_request goal
causes the execution of the requested task in the domain layer.

1 The Jadex Project: Programming Model 9

achieve
cnp_execute_request

(in proposal, in proposal_info,
in initiator, out result)

cfp

refuse

propose

alt

achieve
cnp_initiate start

(in cfp, in receivers, inout cfp_info,
out result, out interaction_state)

alt reject-proposal

accept-proposal

failure

inform

alt

query
cnp_make_proposal

(in cfp, in initiator, out proposal,
out proposal_info)

cnp_initiate end

query
cnp_evaluate_proposals

(in cfp, in proposals,
inout cfp_info, out acceptables)

cnp_receiver_interaction end

perform
cnp_receiver_interaction start
(out interaction_description,

out interaction_state, out result)

Initiator
Protocol Layer

Participant
Protocol Layer

Initiator
Domain Layer

Participant
Domain Layer

FIPA-ContractNet-Protocol

Fig. 1.3 Goal-oriented contract-net protocol (from [6])

1.2.3 Application: MedPAge

The described features of the Jadex BDI architecture will be illustrated with
an example application called MedPAge, which is a real world multi-agent
application that additionally makes use of capabilities for modularization
and reusability as well as goals, goal-oriented interaction protocols for com-
plex negotiations. The aim of the MedPAge (�Medical Path Agents�) project
[38, 37, 52] was improving patient scheduling in hospitals. Approach of the
project was representing the di�erent goals of the involved stakeholders by
intelligent agents. E.g. patient agents would try to minimize the waiting times
for their patients, whereas resource agents would try to maximize the utiliza-
tion of hospital resources such as radiology units. As these goals are usually in
con�ict, the agents perform autonomous negotiations for producing schedules
that balance the individual goals.

The project was part of a larger initiative investigating the applicability
of agent technology to real world business applications. The DFG-funded1

priority research programme SPP 1083 was conducted from 2000-2006 and
involved projects from the areas of hospital logistics as well as manufacturing
logistics.2

The hospital setting considered for the MedPAge project was derived from
a real German hospital with hundreds of patients as well as several functional
units with di�erent resources. The resulting agent-based application thus ex-
hibits much more complexity compared to the rather toy-like cleaner world

1 Deutsche Forschungsgemeinschaft (German Research Council): http://www.dfg.de
2 More details can still be found on the programme web site: http://www.realagents.org/

10 Alexander Pokahr, Lars Braubach, and Kai Jander

Fig. 1.4 MedPAge system overview diagram

application. Therefore, besides using goal representation and goal delibera-
tion for de�ning the behavior of the individual agents, also capabilities and
goal-oriented interaction protocols have been employed in the implementa-
tion.

Architecture and Design

The main goal of the MedPAge system consists in generating an e�cient
treatment scheduling plan. Thus the main goal of performing treatments can
be re�ned towards two subgoals for each side. With respect to the hospital
side, the main objective is to achieve a high resource utilization while the
patient side is interested in seeing patient needs being satis�ed, e.g. having
short waiting times or giving priority to patients with severe diseases. Of
course, the pursuit of these system goals has to respect the fundamental
medical conditions in place.

The MedPAge system has been developed following the Prometheus
methodology [36]. The core of the architecture is the system overview di-
agram, which is depicted in Fig. 1.4. This design contains two agent types
that represent patients and hospital resources respectively. This allows a nat-
ural modeling and assignment of goals to the di�erent coordination objects
(wards and patients) and also adequately re�ects the decentralized structure
of hospitals. The patient agent is responsible for announcing these requested
treatments at a corresponding functional unit (e.g. at the x-ray unit). Fur-
thermore, it ensures that patients visit treatment rooms and are afterwards
brought back to their ward. A resource agent accepts appointment requests
from patient agents and is in charge to create treatment schedule. The re-
source agent is noti�ed whenever a new treatment can begin. In this case
it calls the patient from the ward and also informs the resource about the

1 The Jadex Project: Programming Model 11

Fig. 1.5 a) patient agent b) resource agent

planned treatment and patient. After treatment end the patient is sent back
to its ward.

In order to implement the MedPAge system the high-level system design
has been further concretized to the patient and resource agent design shown
in Fig. 1.5. These diagrams visualize the goals, plans, events, knowledge bases
as well as the incoming percepts and outgoing environmental actions of the
agents. The agent functionalities have been modeled as goals and plans, which
can express the proactive as well as reactive agent behavior. The patient agent
reacts on treatment percepts by creating a new make reservation goal for a
speci�c appointment. The goal is handled by the reserve appointment plan,
which uses a registry to �nd resource agents representing the functional unit
it needs for the planned treatment. The set of resource agents is subsequently
used to �nd a suitable appointment for the patient by performing negotia-
tions that aim at respecting patient (e.g. health state) as well as resource (e.g.
other appointments and utilization) needs. At resource side the new requi-
sition form has to be taken into account and is thus added to the agent's
knowledge base. The knowledge base is monitored by a keep resource uti-
lized goal, which is used to assure a bene�cial appointment ordering from the
resource's point of view. Similar to the appointment reservation the patient
pick up mechanism has been modeled.

The functional unit signals the readiness for a new treatment to the re-
source agent, which activates the call patient plan that contacts the patient
agent with a pick up request. The receiving patient agent starts the visit
resource plan and decides if the visit is possible (e.g. the patient could not
be at the ward). The resource agent is informed about the decision. Further-
more, if the decision is positive, the ward is noti�ed to send to patient to
the functional unit and the internal beliefs of the patient location is updated.
The treatment end is again announced to the resource agent. It reacts by
using the call patient plan to update its beliefs and forward the information
to the patient agent.

12 Alexander Pokahr, Lars Braubach, and Kai Jander

The design diagrams from Fig. 1.5 have been used to implement the
application with Jadex BDI agents. The high correspondence between the
Prometheus design concepts and the Jadex BDI concepts led to a straight
forward implementation process that directly mimics the design.

Capabilities

Capabilities allow decomposition and reusability of agent functionality. In
MedPAge, di�erent scheduling mechanisms have been tested under realistic
conditions. To keep implementation e�orts low it was critical to modularize
the agent designs and factor out common functionality. The primary com-
ponents of the application were the patient and resource agents, which were
accompanied by some support agents [39] of limited complexity. Common
functionality of the patient as well as resources agents that was indepen-
dent of the scheduling algorithm concerns the call patient module, introduced
above. Regardless of how the agents negotiate the time slots for treatments
and examinations, the actual calling of a patient from the ward to the cor-
responding resource has to be performed as a separate step allowing manual
intervention of hospital personnel in case of, e.g., emergencies. Additionally,
the implementation of the call patient module might di�er with respect to
the existing IT systems already available in the hospital.

For each tested scheduling algorithm, two capabilities have been imple-
mented: one for the patient side and one for the resource side. Using the im-
port/export interfaces of the capability concept, these modules can be seam-
lessly integrated into the agents and coupled with the remaining functional-
ity, such as the call patient module. Each implemented scheduling approach
de�nes a di�erent pattern of message exchange according to an interaction
protocol. The capabilities for the patient and resource agent complementarily
implement either the initiator or participant role of this protocol. Details of
the protocol implementations are given in the next section.

Goal-oriented Interaction Protocols

In MedPAge, scheduling mechanisms of varying complexity were imple-
mented. The MedPaCo (�Medical Path Coordination�) algorithm incorpo-
rates stochastic knowledge about the probability of future treatments based
on prede�ned clinical pathways as well as statistical data on previous pa-
tients with the same diagnosis. Based on this knowledge, a patient agent can
estimate the value of a time slot o�ered by some required hospital resource.
E.g. a slot would be assigned a higher value, when waiting for the next slot
would signi�cantly increase the overall staying time of the patient at the
hospital. The resource agents collect estimations from multiple patients and
adapt their local schedule accordingly.

1 The Jadex Project: Programming Model 13

Fig. 1.6 MedPaCo3 negotiation protocol

The MedPaCo protocol is shown in Figure 1.6. The protocol is split into
four phases. The �rst two phases involve communication the need for a time
slot from the patient to the resource (subscription phase) and announcing the
start of an auction for an upcoming time slot (announcement phase). The
last two phases correspond to the contract-net protocol as already introduced
in Section 1.2.2.4. In the bidding phase, the resource agent collects the bids
from the patient and selects the winning patient in the awarding phase. At any
time multiple negotiations between overlapping sets of patient and resource
agents may take place. Therefore a patient might simultaneously win two
negotiations at di�erent resources. As a result, the awarding phase needs to
be cyclic, because a winning patient might have accepted another time slot for
the same treatment already (cancel(treatment)) or for a di�erent treatment
(refuse(not-available)).

Based on the goal-oriented interaction protocols approach, the business
logic of the negotiation can be cleanly separated from the protocol speci�ca-
tion. Important domain interaction points of the protocol are the evaluation
of the time slot by the patient agent after receiving the cfp(treatment) mes-
sage and the evaluation of the patient proposals by the resource agent to
reject or accept bids.

14 Alexander Pokahr, Lars Braubach, and Kai Jander

1.2.4 Summary

The Jadex BDI architecture simpli�es agent programming as it allows for in-
tuitively decomposing agent behavior into responsibilities and abilities, which
can be treated separately. Responsibilities of an agent can be obtained from a
requirements analysis or an abstract system design and are described explic-
itly as goals (e.g. world states to be achieved or maintained). The abilities are
de�ned as plans, i.e. procedural recipes how some goals might be pursued.
The built-in goal deliberation strategy further allows intuitively controlling
the order of goal processing by taking a local perspective of con�icts and
precedence relations between goals. Capabilities are a modularization con-
cept that respects all aspects of the BDI architecture and deliberation and
can be used for decomposing an agent design into parts that can be indepen-
dently developed. The goal-oriented interaction protocols approach connects
the internal BDI concepts to message-based interaction multi-agent systems
and thus allows a seamless integration of both. Ready-to-use prede�ned inter-
action protocols, such as the contract-net, further simplify the development
of common interaction patterns.

One design focus of the Jadex BDI architecture was providing a means
of agent programming that can be easily learned by programmers with a
traditional (e.g. object-oriented) background. On the other hand, the pro-
gramming model should �t well with a high-level intuitive understanding of
an intelligent agent. Experiences with the Jadex framework in numerous soft-
ware projects as well as teaching courses have shown that the BDI model can
be easily understood and represents a natural way of thinking. Following the
provided Jadex programming tutorials, students with only Java-knowledge
are usually capable of developing their own agents in a short time frame.

In the MedPAge project using agent technology helped with several di�-
cult problems. First, it perfectly mimics the decentralized nature of hospitals
with wards and di�erent functional units. The approach respects the existing
autonomy of these entities and uses the agent metaphor to represent them
explicitly. This allowed modeling the scheduling problem as decentralized
coordination approach, in which self-interested patient and resource agents
negotiate with each other to reach their goals. Using Jadex facilitated the
implementation of the MedPAge system in several ways. Most noteworthy, it
allowed a high level system design using Prometheus with a direct mapping to
a Jadex implementation, it enabled reuse of functionalities using agent mod-
ules and it helped hiding negotiation complexities using interaction goals.

1.3 BDI in Work�ows: GPMN

While a number of challenges in business process management, especially
in the area of production work�ows, have been addressed in various ways

1 The Jadex Project: Programming Model 15

[31], there remains a set of business processes with particular challenges.
For example, processes like car model development cover a considerable time
span, often multiple years, yet the processes themselves are dynamic. Speci�c
practices may change while the process is in progress and unforeseen events
outside the process may have an impact selecting the next set of actions in
the process. Furthermore, collaborative processes like product development
tend to be unstructured in terms of control �ow. The control �ow of such
a process depends on the actions and discussions of the process participants
and is di�cult to predict in advance.

Faced with these challenges, it can be seen that a new approach is necessary
to address a changing process environment and dynamic business processes
if those processes are to be modeled as executable work�ows. Since most
aspects of the processes are subject to change, the question becomes which
parts of the processes are actually stable and can be modeled in an executable
work�ow. It became clear that the only stable aspects these processes were
strategic aspects like business goals. For example, during car development,
the business goal of developing a new car model remains the same, even if
the actual means of achieving the goal, the order in which they are achieved
or the process environment like new parts or schedules may change over the
years.

Thus, a goal-driven work�ow modeling language would allow for the re-
quired �exibility and agility of the processes. Goals would have to be evalu-
ated during execution and appropriate actions should be selected to further
the currently active goals. Since the BDI agent model already o�ers a goal-
centric approach, it is a good candidate for the execution of such work�ows.
The integration of work�ow concepts in Jadex began with the DFG project
�Go4Flex� [9] in cooperation with Daimler AG based on previous research
conducted at Daimler Group Research regarding goal-oriented work�ow con-
cepts [15].

1.3.1 Related Work

A diverse collection of work�ow languages are available both in literature
and practice. Often, each language has a particular focus on either business
domain-oriented modeling of business processes or the automated execution
of processes as work�ows. Examples for business domain-oriented approaches
include languages such as Yet Another Work�ow Language (YAWL [50]),
Event-driven Process Chains (EPCs [45]) and BPMN. Execution-centered
approaches include ECA (Event Condition Action [29]), Petri nets and the
Business Process Execution Language (BPEL [34]).

This distinction is primarily one of degree and not of fundamental lim-
itations. For example, it is certainly possible, provided the semantics are
su�ciently de�ned, to directly execute BPMN using an interpreter and it is

16 Alexander Pokahr, Lars Braubach, and Kai Jander

also possible, albeit inconvenient, to directly implement a business process
in BPEL. In addition, conversion of, for example, BPMN models to BPEL
work�ow has become a common practice [35].

The languages can be evaluated based on how they address the �ve per-
spectives of the holistic business process view proposed by List and Korherr
[32] based on earlier work of Curtis et al. [20]. The functional view focuses
on the actions of a process, i.e. the execution of tasks. This view introduces
modeling concepts such as atomic tasks and subprocesses. The behavior view
centers around the control �ow by de�ning the sequence of the elements of
the functional view. This view is often represented using sequence edges and
branching elements like XOR- or AND-splits and joins. The necessary data for
tasks and data produced by tasks are represented in the informational view.
This can include both simple information as well as complex business data
structures, products and services. Organizational structures such as roles, ac-
tors and organizational units are represented in the organizational view. This
includes the representation of work distribution and responsibilities. Finally,
process meta issues and important process characteristics like strategic and
operational business goals and their performance metrics in the form of key
performance indicators are included in the context perspective.

The �rst four perspectives are relatively well-established and represented
in work�ow and business process modeling language to a varying degree. The
most comprehensive approach in this regard is the ARIS house of business
engineering [45]. The context perspective is a more recent addition and, as a
result, tends to be less represented and connected to the other four perspec-
tives. Most modeling languages like YAWL, BPEL and BPMN are strongly
focused on the behavior and functional perspectives, featuring a limited sup-
port for the organizational and informational perspectives, often relying on
external models and means to provide more comprehensive support. The
context perspective generally receives little support or is completely ignored.

This situation is based both on practical consideration as well as di�culties
integrating the various perspectives in a comprehensive model. The ARIS
approach, which tends to be the most comprehensive, solves the problem of
multiple perspectives by introducing a myriad of models to represent them.
The disadvantage of this approach is the lack of integration and the risk of
diverging models during both the initial development of a work�ow model
and later work�ow reengineering.

The business goals of a process could potentially be used to integrate
both the context perspective and the behavior perspective. They not only
represent the reasons and motivation for the process but they would also
in�uence the execution of a work�ow model in a work�ow engine depending
on their speci�cation. Before our approach, attempts have been made to
integrate the context perspective using the user requirements notation (URN)
in conjunction with use case maps (UCM) and the goal-oriented requirements
language (GRL) [42]. However, unlike the approach presented here, this does

1 The Jadex Project: Programming Model 17

not use goals as both functional and non-functional features and therefore
does not integrate the context and behavior perspective.

Our approach is based on earlier work on the goal-context method devel-
oped at Daimler AG [15], which has also been spun o� as a commercial tool
[18]. However, this commercial tool uses are more straightforward processing
of the goals and does not include the BDI reasoning process central to our
approach.

1.3.2 Approach

Most business process modeling languages are centered on the ordering and
execution of tasks. For example, BPMN uses sequence edges and gates to
direct the control �ow towards the appropriate task elements. In contrast,
the approach presented here attempts to focus on the business reasons for
the process instead of the individual actions that are required to satisfy the
process. This shifts the perspective away from the question of how to solve
a problem and emphasizes why action is needed and what target state is
desired.

This is accomplished by introducing business goals as process modeling
element. In order to model a new work�ow, the work�ow engineers �rst de-
termine the central business goal that the process aims to accomplish. For
example, in case of a car development process, this central goal can be to
develop a new car model. This �rst goal tends to be very abstract and can-
not be easily re�ected with concrete tasks and actions. Therefore, the next
step involves decomposing the goal into multiple subgoals, which, when ac-
complished, implicitly achieve the original goal. These subgoals then can be
further broken down into more subgoals until the goals are su�ciently con-
crete and simple enough to accomplish them using a relatively basic and
straightforward set of actions, which are then expressed as a simple BPMN
work�ow fragment.

This section will elaborate on the goal modeling language used to specify
such goal-oriented processes and describe the technical infrastructure used to
support such processes in a productive environment.

1.3.2.1 Goal-oriented Process Modeling Notation

Since current work�ow languages like BPMN are task-centric, a new language
or at least language elements are needed to represent functional business goals
in a process. While it is technically simpler to represent goal hierarchies in
a purely textual fashion like BPEL represents traditional work�ow models,
the goal hierarchy is supposed to represent an abstraction from the technical
details and center around business functionality, which also help non-technical

18 Alexander Pokahr, Lars Braubach, and Kai Jander

���� ����	����
����

��������� ��������

����	����
�����

���
�����

���������
�����

�������
����	����
�����

�

�������

� �

Fig. 1.7 GPMN elements (from [26])

and more business-centric people to understand the work�ow models. As a
result, a graphical representation for the language is desirable.

This language called the Goal-oriented Process Modeling Notation (GPMN)
currently consists of four node elements and four edge elements shown in Fig.
1.7. These elements have been developed and tested within a number of both
synthetic test work�ows as well as real world work�ows found at Daimler AG.
The most obvious element is the goal element, which can represent an over-
all (�top level�) business goal of a process or a subgoal of another goal. The
language currently o�ers four kinds of goals that have been derived from the
underlying BDI reasoning when found useful in a process. The most common
kind of goal is the achieve goal which aims to reach a certain process state.
On the other hand, if the process simply requires to perform a certain action
without regard for the process state, the perform goal is used. The third kind
of goal, the query goal, is used to acquire information relevant to the process.
Finally, the most complex goal kind is the maintain goal which constantly
monitors a condition and if that condition is violated, aims to re-establish a
state in which the condition becomes true again.

In order to express available actions to accomplish a goal, one or more
plans can be attached to the goals using a plan edge. Each plan represents an
option for achieving the goal and multiple plans may be tried before a goal
is achieved. Currently there are two types of plans available. The most direct
way of associating tasks with a goal is to attach a BPMN plan. This type
of plan represents a work�ow fragment implemented in BPMN, specifying
exactly which tasks are required to attempt to achieve the goal. However,
in order to decompose goals into subgoals, the second type called activation
plan, is needed. This type of plan is used to activate further subgoals which
together achieve the plan's goal. The subgoals are de�ned by connecting
the activation plan with the subgoals using the activation edge. Since the
activation plan is very simple and is often unnecessary to understand the
process, it is possible to hide it. The plan edge, the activation plan and the
activation edges are then replaced by multiple virtual activation edges directly
connecting the main goal and its subgoals.

Sometimes goals are in con�ict with each other or can possibly interfere
with each other if both are active at the same time. One way of resolving
this con�ict is to consider one goal to be more important and temporarily
suppressing the other goal while it is active. This situation can be modeled
using suppression edges. A goal with a suppression edge pointing to a second

1 The Jadex Project: Programming Model 19

goal will suppress that second goal until it becomes inactive either through
success or failure.

Finally, a subprocess element enables the work�ow engineer to modularize
the work�ow. This is useful when the work�ow is very large and the result-
ing model would consist of an overwhelmingly complex goal hierarchy. The
subprocess element lets the work�ow engineer split o� part of that hierarchy
and integrate it in a separate process model.

1.3.2.2 Process Context

The order of execution in the work�ow is in�uenced by conditions based
on the process context. The context not only contains the complete state of
the work�ow during execution but also re�ects the environment of the work-
�ow. This can include information such as customer information, delivery
estimates, machine states and information about unusual events which have
impact on the work�ow.

Both goals and plans have a number of conditions whose state is in�u-
enced by the context. For example, a drop condition will, if it becomes true,
cause the goal to be dropped and no longer considered while a creation con-
dition will pick up a new goal once the condition becomes true. A number of
conditions are speci�c to the goal kind. Achieve conditions specify the con-
text state when an achieve goal should be considered successful. Maintain
conditions on the other hand de�ne the context state that a maintain goal
aims to maintain. The context conditions of plans are used by the work�ow
to decide whether a particular plan is applicable under the current circum-
stances. For example, an achieve goal which tries to acquire transportation
for an employee between two locations may have two plans, one for booking
plane �ights and one for train rides. However, if one of the locations lack an
airport, the plan for booking �ights is inadequate for achieving the goal and
thus is excluded based on the context.

The process context emphasizes the context perspective and deemphasizes
the behavior view by making task selection and order implicit and context-
dependent instead of explicit using sequences and branches in traditional
work�ow languages. This allows the work�ow engineer to trivially include
escalation and exception handling in the work�ow by adding an appropriate
set of maintain goals instead of including a large number of branches and
event triggers within the work�ow.

1.3.2.3 Technical Implementation

A number of tools have been implemented to support GPMN work�ows.
Modeling and reengineering GPMN work�ows is done using two editors. The
GPMN editor is used to model the goal hierarchy and de�ne the process

20 Alexander Pokahr, Lars Braubach, and Kai Jander

context. The second editor is used to model the work�ow fragments used for
the BPMN plans. Both editors generate XML �les which contain the model
of the work�ow.

The next step after generating the work�ow models using the editors in-
volves their execution using a work�ow engine. A work�ow engine creates an
instance of the work�ow based on the work�ow model, coordinates the exe-
cution of work�ow steps and manages the work�ow state and context. Since
GPMN work�ows are inspired by BDI semantics, using a BDI agent platform
like Jadex as the basis for a work�ow engine was considered to be a good
starting point. The models provided by the editors are �rst loaded and then
transformed into a BDI agent model by adding additional parts needed for
the agent such as the prede�ned activation plans.

In order to enable the BDI agent to execute the BPMN work�ow fragments
used for the BPMN plans, a BPMN interpreter has been developed. This
editor uses a loaded BPMN model in conjunction with an internal BPMN
state to interpret the BPMN elements in the model. As BPMN tends to
contain some ambiguities and inconsistencies in its semantics, only a subset
of BPMN elements is currently supported. The BPMN interpreter itself can
also be used as an interpreter for standalone BPMN processes, enabling Jadex
to execute BPMN work�ows as well.

In addition, a work�ow management system (WfMS) has been developed
around Jadex as the work�ow engine roughly based on the reference model of
the Work�owManagement Coalition (WfMC)[51]. This system provides addi-
tion components like user management, security and administrative features
like monitoring and model deployment. This work�ow management system
can be accessed by client software for which an example implementation is
also available.

1.3.3 Application

Goal-oriented work�ow modeling has been used in a number of applications at
Daimler AG. The example presented here is a partial model of a process used
for preparing the production of a new car model.3 During this process, the
production of the car as well as the parts of the car are tested in a production-
like environment in order to identify issues both with the car parts as well as
the production process. This allows the designers of the parts and work�ow
engineers to address issues in their respective areas before the new car model
is put into factory production.

The process shown in Figure 1.8 starts with the main �Production Prepa-
ration� goal which has to be achieved in order to reach the business goal of
the process. From there, it decomposes into multiple subgoals which address

3 The original work�ow has been made abstract due to business secrecy reasons.

1 The Jadex Project: Programming Model 21

Fig. 1.8 Partial production preparation process (from [26])

three di�erent areas. The �rst area is the test assembly of the vehicle itself
which is a comparably regular and sequential part of the process following a
prede�ned order. This part of the process is consolidated under the �Examine
Assembly� goal.

While the assembly is in progress, issues that are identi�ed by examining
the assembly have to be documented to be addressed at a later point. This
is the second area of the process which is summarized by the �Document
Assembly Issues� goal. It involves the documentation of part changes that
may easy the assembly, parts that are faulty to the point of not allowing
proper assembly and defects in the steps of the assembly process, such as
missing assembly steps or improper order of assembly steps.

Both the �Examine Assembly� and the �Document Assembly Issues� goals
are part of the test assembly and as such are subgoals of the overarching
�Finish Assembly� goal which controls the overall performance of the test
assembly. Outside the test assembly, the issues that have been found need to
be addressed in the appropriate parts or production process workshops. This
is accomplished by the third area of the process which consists of the two
maintain goals �Address Parts Issues� and �Address Assembly Step Issues�.
The maintain condition of these goals aim to keep the list of outstanding
issues empty. If new issue are found during assembly, the maintain condition is
violated and the associated plan is executed which then schedules a workshop
to address this new issue.

Since these maintain goals stay active during the whole product prepara-
tion process, they are direct subgoals of the main �Production Preparation�
goal along with the actual test assembly subgoal �Finish Assembly�. This

22 Alexander Pokahr, Lars Braubach, and Kai Jander

means the main goal and thus the process is not considered to be successful
until the test assembly is over and all issues found during assembly have been
resolved.

Most activities in the described process involve human tasks. The aim of
the agent-based work�ow management system is supporting human experts
(�knowledge workers�) in their activities by improving their coordination. The
goal-oriented process description allows the agent to determine dynamically,
which activities are enabled or required in response to certain events. The
agent thus knows to re-enable corresponding activities automatically (e.g.
scheduling a �Parts Redesign� when hen a faulty part issue was found). Us-
ing techniques such as work item lists, the knowledge workers can quickly
asses the state of the process and which activities are required by them. The
process state is automatically managed by the agent and updated to re�ect
the current situation. E.g. if a faulty part issue was found, but a change of
the overall car design no longer requires the part, then the issue is automat-
ically removed, because resolving the part issue is no longer a subgoal of the
process.

1.3.4 Summary

The GPMN work�ows presented demonstrate how BDI reasoning and agent-
centric approaches can be used to address challenges in the area of business
process management and work�ow modeling. The language has been found
particularly useful for processes that are either subject to a highly dynamic
process context, are particularly long-running or have a low degree of struc-
turing like collaborative and development processes. The goal-based approach
lets the work�ow engineer focus more on the process objectives than on the
order of tasks and puts the context perspective into focus instead of modeling
the work�ow around the behavior perspective. The result of this additional
abstraction allows the work�ows to be more accessible by non-technical par-
ticipants who are more focused on the business side of process management
since the concept of business goals are already well known and map well onto
GPMN processes.

Overall, GPMN processes o�er some unique opportunities to business pro-
cess management. In addition, they already have a background of being tested
against real world challenges at Daimler AG that have so far been hard to
address using traditional means and known work�ow modeling languages.

1 The Jadex Project: Programming Model 23

1.4 Agents, Components and Services: Active

Components

In practice only few agent-based systems have been developed and deployed in
an operative setting. In contrast, other programming models such as object,
component and service orientation have gained wide industrial acceptance.
One could argue that agent orientation is still a very new conceptual approach
and its market penetration will is still to come and will steadily increase
in future. An argument that debilitates this view is the fact that service
orientation is newer than agent orientation and industry interest has been
much higher already since the beginnings of the adoption. The reasons for
not using agent technology in practice are manifold but several obstacles can
be clearly identi�ed.

One such obstacle of particular importance is the set of programming
abstractions for agent systems, which is very di�erent from the other pro-
gramming paradigms. A developer has to deal with ontologies, asynchronous
message based communication, speech acts, internal and possibly social agent
architectures. So the learning e�ort required for developers is high and exist-
ing knowledge e.g. from object orientation only partially helps to cope with
these new concepts. In order to alleviate the low conceptual integration of
agents the active component metaphor has been conceived. The objective
consists in combining the advantages of agents with those of services and
components by bringing together their main characteristics in a new con-
ceptual entity. The resulting active components still have all characteristics
of agents but extend and enhance the software technical construction means
by fostering explicitly reusability, modularity and service based interactions.
This does not only lead to a steeper learning curve as active components are
more similar to already known approaches, it also helps using active compo-
nents, hence agents, in the context of today's predominant service oriented
projects.

1.4.1 Related Work

There are many approaches aiming at a combination of di�erent software
technical strands, whereby these can be distinguished by the dominating
paradigm that was used as starting point for the fusion. Furthermore, the
approaches can be classi�ed according to the integration layer targeted, i.e.
is a conceptual or a rather technical solution sought.

Considering agents as primary conceptual background most approaches
remain oriented towards a technical integration of agents with services. Pro-
totypical examples are the WSIG [2] and WADE projects, which are exten-
sions of the widely used JADE agent platform [2]. WSIG is the web services

24 Alexander Pokahr, Lars Braubach, and Kai Jander

integration gateway and facilitates the interaction of web services and JADE
agents. On the other hand, WADE extends agents with work�ows, so that
agent behavior can be modeled graphically as processes.

In the area of component models several approaches exist that target dis-
tribution and concurrency and for this reason partially adopt agent or actor
model ideas. An example is the Fractal framework [14], which has been ad-
vanced in the ProActive [1] project towards active objects. Similarly, in the
JCoBox project [46] a component model with active object ideas has been
devised. This model introduces coboxes as active entities that own passive
objects and use tasks inside of coboxes for behavior execution. The model
isolates objects of coboxes from other coboxes and thus adopts the typical
separated actor memory model. In addition, with AmbientTalk [49] a new pro-
gramming language for ambient intelligence has been proposed. The ambient
communication and memory model is similar to JCoBox but its focus is on
providing solutions for mobile ad-hoc networks. Furthermore, the component
model of AmbientTalk is rather restricted and does not provide composition
means so far. Both approaches, JCoBox and AmbientTalk, share some impor-
tant conceptual ideas with active components with the main di�erences that
they do not introduce internal component architectures for behavior de�ni-
tion and follow a language based instead of a framework based speci�cation
path.

It can be seen that conceptual integration of agent, component and services
has been tackled partially by other existing approaches. Most close to active
components are two promising strands of research. Firstly, SCA[33] success-
fully integrates services with components and leverages the way SOA based
application can be built. Secondly, some component models like JCoBox and
AmbientTalk bring together concurrency and distribution with traditional
component concepts. Hence, they foster the usage of component models in
dynamic application scenarios. Active component combines these e�orts and
further leverages the behavior speci�cation means by introducing the internal
architecture concept from agents.

1.4.2 Approach

Recently, major IT industry vendors such as IBM, Oracle and TIBCO have
proposed a new software engineering approach called service component ar-
chitecture (SCA) [33], which is meant to be a uni�cation of component and
service oriented architecture (SOA) concepts. The general idea of SCA con-
sists in introducing a hierarchical component model for distributed systems.
The SCA approach fosters dealing with complexity and reuse. Complexity
is addressed by separating the programming model from concrete communi-
cation protocols so that these protocols are largely part of the application
con�guration and not of the functional program part itself. In this way SCA

1 The Jadex Project: Programming Model 25

Fig. 1.9 Active component structure

shields developers from protocol details and allows building applications that
communicate using a di�erent set of protocols. Reuse is facilitated by SCA
by relying on components and services as basic building blocks of software.
Per de�nition components are considered as rather self-contained entities
that exactly de�ne what they need and o�er via required and provided ser-
vices. Hence, components make clear in which contexts they can be used and
which functionality can be expected from them. Active components aim at
combining the SCA model with agent characteristics in order to conceive
a programming model that is capable to deal with scenarios that exhibit a
highly dynamic and concurrently acting set of service providers. In the follow-
ing subsections the structure, behavior and composition of active components
are explained in detail.

1.4.2.1 Structure

Fig. 1.9 presents an overview of the synthesis of SCA and agents to active
components. On the left hand side schematic views of an agent and an SCA
component are depicted. In can be seen that an agent is characterized by
its capability of interacting via asynchronous message passing and internally
uses an internal agent architecture for encapsulating its behavior control. In
contrast, an SCA component interacts with other components by relying on
interconnected required and provided services. By including subcomponents
higher-level functionalities can be composed of available lower-level compo-
nent building blocks. Furthermore, an SCA component has clearly de�ned
con�guration points called properties, which can be used to equip it with
speci�c startup argument values.

The merger of both approaches is shown at the right hand side of Fig.
1.9. Using a black-box perspective, an active component looks very similar
to a traditional SCA component except for the small extension that an ac-
tive component allows for message based interactions in the same way as
agents do. The most signi�cant enhancement of the SCA component concept
results from the inclusion of the internal architecture concept as component
part. This allows active components to realize autonomous behavior that goes

26 Alexander Pokahr, Lars Braubach, and Kai Jander

Fig. 1.10 Active component behavior

beyond its passive service functionalities. In contrast, internal architectures
enable the development of reactive and also proactive component behavior
that can e.g. be used for expressing work�ow logic.

1.4.2.2 Behavior

In Figure 1.10 the behavior model of active components is shown. It is con-
siderably di�erent if compared with agents and SCA components because it
has to combine a service oriented with an agent oriented perspective on how
behavior can be realized. Especially, active components need to respect the
most important property of agents, their autonomy, in order to be usable
for constructing scenarios of components with possibly cooperative or defec-
tive intentions. With respect to active components, autonomy needs to be
re�ected in the way service calls are processed. No active component should
be forced to execute a service call if it cannot or does not want to do it.
Hence, service calls have always to be decoupled from the caller to allow the
called component to reason about the service request. The only contract that
is ensured by service invocations is that the caller is eventually noti�ed about
the call result, being it a value or an exception.

Technically, the decoupling is realized using futures [48], which represent
place holders for the result of asynchronous processing. For each arriving
service call a component immediately returns a future return value and also
schedules an action representing the call in an action queue. Each component
is equipped with an interpreter operating on the queue and processing the
contained actions one by one. The action representing the call may optionally
lead to reasoning about the call and eventually to its execution or refusal.
After service processing has �nished, the interpreter �lls the future with the
real result or exception triggering the resumption of the caller's processing.

In addition to incoming service calls a component also has to deal with
outgoing service calls. These calls are targeted on another active component

1 The Jadex Project: Programming Model 27

Fig. 1.11 Prede�ned dynamic binding scopes

and a required service binding de�nes how this component is found. The
mechanisms for specifying and managing such bindings are part of the active
component composition as described next.

1.4.2.3 Composition

The composition model of active components allows for static as well as dy-
namic component interconnections. Static composition means that develop-
ers use a deployment speci�cation in order to directly wire speci�c component
instances with each other. The advantage of this classical composition model,
that is adopted by SCA and other component models, consists in the possibil-
ity of creating self-contained components that use their own subcomponents
to bring about internally needed functionality on their own. Therefore, such
components can be made applicable in many usage contexts by minimizing
the number of required service interfaces on the component top-level. On the
other hand, static wiring is not an acceptable solution for many dynamic
real world application scenarios, in which service providers may appear and
vanish at runtime [28].

For this reason, the active components approach supports besides a static
wiring also dynamic binding based on search speci�cations (cf. [40]). Dynamic
binding speci�cation use search scopes for locating appropriate services in
components depending on the proximity with respect to the searching com-
ponent. Some prede�ned scopes, that proved to be useful in practice, are
depicted in Fig. 1.11. They range from local scope, which only considers
services of the searching component itself, over component and application
scope, which extend the area towards sub- and all application components
respectively towards platform and global scopes that include the whole plat-

28 Alexander Pokahr, Lars Braubach, and Kai Jander

form and even all accessible remote sites. Further it is planned to support also
the application dependent de�nition of user search scopes allowing developers
to re�ect their speci�c domain needs.

1.4.3 Application: JadexCloud

To illustrate the active component development approach, the JadexCloud
infrastructure will be presented. JadexCloud represents a middleware for pri-
vate enterprise cloud scenarios and especially highlights the advantages of the
active component programming model for utility computing. JadexCloud [8]
is itself a middleware, currently in development, for running applications
based on the active component concept within private enterprise clouds. The
general idea consists in supporting cloud application not only in homogeneous
high-end data centers, but also in existing heterogeneous company comput-
ing networks, which typically consist of a mix of di�erently powerful and
utilized machines. In such a setting cloud applications have to be designed
in a very modular fashion, so that dynamic relocations of certain application
parts can be performed at runtime, whenever the infrastructure or applica-
tion needs change. JadexCloud makes use of active components in two ways.
First, the infrastructure is built itself based on active component concepts
and secondly, it supports the execution of cloud applications developed with
active components.

Key concept of the proposed JadexCloud architecture is a layer model that
helps separating responsibilities and managing complexity. It is composed of
the following three layers: daemon layer, platform layer and application layer.

The daemon layer is the foundation for creating a cloud of interconnected
nodes. This is done by small daemon platforms that need to run on each
host that should participate in the cloud. The daemon platform includes an
awareness service, which is capable of automatically detecting other plat-
forms. The awareness service relies of di�erent discovery mechanisms that
can be used to discover new nodes. Currently, several mechanisms for de-
tecting nodes in a local network exist relying IP broadcast and multicast
schemes. Furthermore, to build up networks with hosts from di�erent net-
works a relay discovery mechanism has been developed, which acts as a bridge
between platforms. It is planned to further extend the relay mechanism in
the direction of a redundant supernode structure known from several peer-to-
peer networks. In the network a single node can always construct an actual
view of available network resources. Furthermore, the daemon layer allows
for basic management functionalities for application handling. Concretely,
application components can be started and terminated. In order to enforce a
strict separation between applications those components are started on newly
started application platforms that are controlled by the daemon. Application
management further requires that software bundles of applications can be

1 The Jadex Project: Programming Model 29

accessed in speci�c versions, for normal startup as well as for rolling out
updates of existing applications. The daemon layer handles this by utilizing
software repositories that can be hierarchically organized, i.e. distinguishing
local, companywide and global repositories.

On top of the daemon layer the platform layer o�ers a global administra-
tion view for deployment and management of applications within the cloud.
The entry point for the platform layer is the so called JCC (Jadex Control
Center), which o�ers a canon of remotable tools for setting up an application
and monitoring its behavior. All nodes build up the cloud from their local
perspective so that an arbitrary node with JCC can be used for application
management. Based on local con�guration options and user privileges, the
JCC provides access to a subset of the existing nodes called the cloud view.
The administrator can choose, which nodes to include in the deployment of
an application, by assigning application components to the platforms running
on the di�erent nodes. To start the separate components, each platform will
obtain the required component implementations from the repository.

The application layer, sitting on top of the platform layer, deals with how a
distributed application can be built based on the active components paradigm
as well as providing tools for debugging and testing applications during devel-
opment. Besides the already presented general concepts of active components
providing cloud ready applications need to especially consider the speci�ca-
tion of non-functional aspects like resource needs of component instances.
These aspects will be part of a deployment description for an application,
which can be evaluated by the platform layer for creating a deployment plan,
i.e. an ideal initial component-resource mapping, and also for component re-
locations at runtime. One non functional key property that has to be ensured
at runtime is fault tolerance of software components. In case fault tolerance
is needed for speci�c components they will be replicated and checkpointing
will be employed to ensure that components can be restarted after a crash
has occurred. Furthermore, it is planned to wrap already existing cloud ser-
vices, for example for storage of data in the cloud, and make them in this
way accessible for active components in a natural way.

1.4.4 Summary

This section has brie�y introduced the active component concept, which uni-
�es central component with agent ideas. The integration has been done by
extending the SCA component model with internal architectures. As a result
components may own not only service driven passive but also autonomous
self governed behavior. Looking at active components from the outside they
appear no di�erent to traditional SCA components so that the advantages
of managing complexity and reuse by hierarchical composition and abstrac-
tion from technology dependent communication means remain established.

30 Alexander Pokahr, Lars Braubach, and Kai Jander

Details of active component structure, behavior and composition have been
introduced and further explained. A common objection that is put forward
against active components concerns the potential loss of autonomy that is
caused by using service, i.e. method based interactions. This argument is
not valid as a service provider is still free to reason about performing ser-
vice requests before they are actually executed. Services just introduce sound
software technical foundations for typed interactions. An in depth discussion
about method calls and agents is out of scope for this chapter but can be
found in [7].

In JadexCloud, agent and active component technology is helpful with
respect to several aspects. It de�nes a new programming model for cloud
applications that naturally supports a louse coupling of the components and
thus allows for dynamic recon�gurations of the applications according to the
system demands. Furthermore, the complexity of the JadexCloud architec-
ture became better manageable by explicit service interfaces introduced in
active components. In this way the interfaces between the layers and be-
tween service requesters and providers could be cleanly software technically
described.

1.5 Conclusion and Outlook

Agent technology o�ers intuitive concepts for describing distributed systems
but implementing them is hard, time consuming and very di�erent to other
established technologies. In the following, some of the lessons learnt regarding
the programming model for agent systems are summarized:

• The concepts for programming agents depend on the internal agent archi-
tecture used. In literature many di�erent agent architectures have been
proposed, often inspired from other disciplines like biology, psychology
or philosophy. At the modeling and implementation layer this leads to a
huge heterogeneity of approaches and requires considerable learning ef-
forts. From a developer perspective it is advantageous to use an agent
architecture that �ts the concrete project requirements, especially the
complexity of the agent functionalities is an indicator the choice of the
right programming model. Due to this wanted �exibility agent platforms
should not prescribe a speci�c programming model but either allow de-
velopers to choose a model among di�erent options or provide a simple
model that can be used to build custom extensions on top of it. One
architecture of speci�c importance is the BDI model as it is a hybrid
approach that combines reactive with proactive features, i.e. it is able to
timely react of environmental events and is also capable cognitive behav-
ior based on the way human rational action is explained. In Jadex both
aspects have been taken into account. On the one hand, di�erent agent

1 The Jadex Project: Programming Model 31

architectures are supported by the kernel concept and on the other hand
a BDI kernel exists that �ts many common use cases.

• Besides the agent itself, the inter agent layer plays an important role for
realizing multi-agent system. It has been found that building interaction
based purely on speech act based asynchronous messages is error prone
and di�cult as no compile time checks can be done and profound knowl-
edge regarding the FIPA message format, ontologies and interaction pro-
tocols is required. Furthermore, agent systems are typically peer-to-peer
and lack a mechanism for hierarchical decomposition, which is essential
for handling complexity in large systems. Conceptually, holons �ll this gap
but existing frameworks do not pick up these ideas. In Jadex these chal-
lenges have been addressed by the active components metaphor, which
allows service-based asynchronous interactions and allows components to
have subcomponents.

The main motivation of Jadex has also been to facilitate the practical us-
ability of agent technology. In this respect all developments described in this
chapter have strived to deliver conceptual solutions that are bound to gener-
ically usable software. Respecting the problems and challenges from above,
Jadex has been developed with the rationale in mind to connect agents tighter
to established approaches. Concretely, with a BDI approach on basis of es-
tablished programming languages like Java and XML programming of goal
directed intentional agents was made easily accessible also for inexperienced
agent developers. Furthermore, it has been shown how BDI agent concepts
can be adopted for goal driven work�ow descriptions. As goal are consid-
ered more stable than activities these kinds of work�ows help to cope with
frequently changing business processes. Finally, with active components a
uni�cation of agent, services and components has been introduced. Active
components strongly contribute to the problem of lacking industry adoption
as they are based on the standardized and industry driven SCA model. As
part of ongoing work, active components are �eld tested in commercial ap-
plications, concretely tackling the area of business intelligence, as well as
scienti�c mass calculations.

References

1. F. Baude, D. Caromel, and M. Morel. From distributed objects to hierarchi-
cal grid components. In R. Meersman, Z. Tari, and D. C. Schmidt, editors,
CoopIS/DOA/ODBASE, volume 2888 of Lecture Notes in Computer Science, pages
1226�1242. Springer, 2003.

2. F. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent systems with
JADE. John Wiley & Sons, 2007.

3. R. Bordini, Jomi F. Hübner, and R. Vieira. Jason and the Golden Fleece of
Agent-Oriented Programming. In R. Bordini, M. Dastani, J. Dix, and A. El Fallah

32 Alexander Pokahr, Lars Braubach, and Kai Jander

Seghrouchni, editors, Multi-Agent Programming: Languages, Platforms and Applica-
tions, pages 3�37. Springer, 2005.

4. M. Bratman. Intention, Plans, and Practical Reason. Harvard University Press, 1987.
5. M. Bratman, D. Israel, and M. Pollack. Plans and Resource-Bounded Practical Rea-

soning. Computational Intelligence, 4(4):349�355, 1988.
6. L. Braubach and A. Pokahr. Goal-oriented interaction protocols. In 5th German

conference on Multi-Agent System Technologies (MATES 2007). Springer, 2007.
7. L. Braubach and A. Pokahr. Method calls not considered harmful for agent inter-

actions. International Transactions on Systems Science and Applications (ITSSA),
1/2(7):51�69, 11 2011.

8. L. Braubach, A. Pokahr, and K. Jander. Jadexcloud - an infrastructure for enterprise
cloud applications. In S. Ossowski F. Klügl, editor, In Proceedings of Eighth Ger-
man conference on Multi-Agent System TEchnologieS (MATES-2011), pages 3�15.
Springer, 2011.

9. L. Braubach, A. Pokahr, K. Jander, W. Lamersdorf, and B. Burmeister. Go4�ex:
Goal-oriented process modelling. In Proceedings of the 4th International Symposium
on Intelligent Distributed Computing (IDC 2010). Springer, 2010.

10. L. Braubach, A. Pokahr, and W. Lamersdorf. Extending the Capability Concept for
Flexible BDI Agent Modularization. In R. Bordini, M. Dastani, J. Dix, and A. El Fallah
Seghrouchni, editors, Proceedings of the 3rd Workshop on Programming Multiagent
Systems: Languages, frameworks, techniques, and tools (ProMAS 2005), pages 139�
155. Springer, 2006.

11. L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Representation for BDI
Agent Systems. In Proc. of (ProMAS 2004), pages 44�65. Springer, 2005.

12. Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf. A universal criteria cata-
log for evaluation of heterogeneous agent development artifacts. In Sixth International
Workshop From Agent Theory to Agent Implementation (AT2AI-6), 2008.

13. R. Brooks. A Robust Layered Control System For A Mobile Robot. IEEE Journal of
Robotics and Automation, 2(1):24�30, March 1986.

14. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The fractal
component model and its support in java: Experiences with auto-adaptive and recon-
�gurable systems. Softw. Pract. Exper., 36(11-12):1257�1284, 2006.

15. B. Burmeister, M. Arnold, F. Copaciu, and G. Rimassa. Bdi-agents for agile goal-
oriented business processes. In AAMAS '08, pages 37�44. IFAAMAS, 2008.

16. P. Busetta, N. Howden, R. Rönnquist, and A. Hodgson. Structuring BDI Agents in
Functional Clusters. In N. R. Jennings and Y. Lespérance, editors, Proceedings of the
6th International Workshop Intelligent Agents VI, Agent Theories, Architectures, and
Languages (ATAL 1999), pages 277�289. Springer, 2000.

17. P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas. Jack Intelligent Agents - Com-
ponents for Intelligent Agents in Java. AgentLink News, (2):2�5, January 1999.

18. M. Calisti and D. Greenwood. Goal-oriented autonomic process modeling and execu-
tion for next generation networks. In Proc. of MACE '08. Springer, 2008.

19. P. R. Cohen and H. J. Levesque. Teamwork. Technical Report Technote 504, SRI
International, Menlo Park, CA, March 1991.

20. B. Curtis, M. Kellner, and J. Over. Process modeling. Com. ACM, 35(9):75�90, 1992.
21. A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements acquisi-

tion. Science of Computer Programming, 20(1�2):3�50, April 1993.
22. M. Dastani, B. van Riemsdijk, and J. J. Meyer. Programming Multi-Agent Systems in

3APL. In R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors,Multi-
Agent Programming: Languages, Platforms and Applications, pages 39�67. Springer,
2005.

23. D. Dennett. Intentional systems. Journal of Philosophy, (68):87�106, 1971.

1 The Jadex Project: Programming Model 33

24. M. George� and A. Lansky. A system for reasoning in dynamic domains: Fault diag-
nosis on the space shuttle. Technical Report Technical Note 375, Arti�cial Intelligence
Center, SRI International, Menlo Park, California, 1986.

25. M. Huber. JAM: A BDI-Theoretic Mobile Agent Architecture. In O. Etzioni, J. Müller,
and J. Bradshaw, editors, Proceedings of the 3rd Annual Conference on Autonomous
Agents (AGENTS 1999), pages 236�243. ACM Press, 1999.

26. K. Jander, L. Braubach, A. Pokahr, and W. Lamersdorf. Goal-oriented processes with
gpmn. International Journal on Arti�cial Intelligence Tools (IJAIT), 2011.

27. N. Jennings and E. Mamdani. Using Joint Responsibility to Coordinate Collaborative
Problem Solving in Dynamic Environments. In AAAI, pages 269�275, 1992.

28. P. Jezek, T. Bures, and P. Hnetynka. Supporting real-life applications in hierarchical
component systems. In R. Lee and N. Ishii, editors, 7th ACIS Int. Conf. on Software
Engineering Research, Management and Applications (SERA 2009), volume 253 of
Studies in Computational Intelligence, pages 107�118. Springer, 2009.

29. G. Knolmayer, R. Endl, and M. Pfahrer. Modeling processes and work�ows by business
rules. In Business Process Management, Models, Techniques, and Empirical Studies,
pages 16�29, London, UK, 2000. Springer-Verlag.

30. J. F. Lehman, J. Laird, and P. Rosenbloom. A gentle introduction to Soar, an archi-
tecture for human cognition. In S. Sternberg and D. Scarborough, editors, Invitation
to Cognitive Science, volume 4, pages 212�249. MIT Press, 1996.

31. F. Leymann and D. Roller. Production Work�ow: Concepts and Techniques. Prentice
Hall PTR, 2000.

32. B. List and B. Korherr. An evaluation of conceptual business process modelling lan-
guages. In Proc. of SAC '06, pages 1532�1539. ACM, 2006.

33. J. Marino and M. Rowley. Understanding SCA (Service Component Architecture).
Addison-Wesley Professional, 1st edition, 2009.

34. OASIS. Web Services Business Process Execution Language (WSPBEL) Speci�cation,
version 2.0 edition, 2007.

35. C. Ouyang, M. Dumas, A. ter Hofstede, and W. van der Aalst. From bpmn process
models to bpel web services. In Proc. of ICWS '06, pages 285�292. IEEE, 2006.

36. L. Padgham and M. Winiko�. Prometheus: a methodology for developing intelligent
agents. In Maria Gini, Toru Ishida, Cristiano Castelfranchi, and W. Lewis Johnson,
editors, Proceedings of the 1st International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2002), pages 37�38. ACM Press, July 2002.

37. T. Paulussen, A. Zöller, F. Rothlauf, A. Heinzl, L. Braubach, A. Pokahr, and
W. Lamersdorf. Agent-based patient scheduling in hospitals. In P. Lockemann
O. Spaniol S. Kirn, O. Herzog, editor, Multiagent Engineering - Theory and Applica-
tions in Enterprises, pages 255�275. Springer, 6 2006.

38. T. O. Paulussen, N. R. Jennings, K. S. Decker, and A. Heinzl. Distributed Patient
Scheduling in Hospitals. In G. Gottlob and T. Walsh, editors, Proceedings of the
18th International Joint Conference on Arti�cial Intelligence (IJCAI 2003). Morgan
Kaufmann, 2003.

39. T. O. Paulussen, A. Zöller, A. Heinzl, A. Pokahr, L. Braubach, andW. Lamersdorf. Dy-
namic Patient Scheduling in Hospitals. In M. Bichler, C. Holtmann, S. Kirn, J. Müller,
and C. Weinhardt, editors, Coordination and Agent Technology in Value Networks.
GITO, Berlin, 2004.

40. A. Pokahr and L. Braubach. Active Components: A Software Paradigm for Distributed
Systems. In Proceedings of the 2011 IEEE/WIC/ACM International Conference on
Intelligent Agent Technology (IAT 2011). IEEE Computer Society, 2011.

41. A. Pokahr, L. Braubach, and W. Lamersdorf. A goal deliberation strategy for bdi
agent systems. In T. Eymann, F. Klügl, W. Lamersdorf, M. Klusch, and M. Huhns,
editors, Proceedings of the 3rd German conference on Multi-Agent System TEchnolo-
gieS (MATES-2005). Springer, 2005.

34 Alexander Pokahr, Lars Braubach, and Kai Jander

42. A. Pourshahid, D. Amyot, L. Peyton, S. Ghanavati, P. Chen, M. Weiss, and A. Forster.
Business process management with the user requirements notation. Electronic Com-
merce Research, 9(4):269�316, 2009.

43. A. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language.
In W. Van de Velde and J. Perram, editors, Proceedings of the 7th European Workshop
on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW 1996), pages
42�55. Springer, 1996.

44. A. Rao and M. George�. BDI Agents: from theory to practice. In V. Lesser, editor,
Proceedings of the 1st International Conference on Multi-Agent Systems (ICMAS
1995), pages 312�319. MIT Press, 1995.

45. A.-W. Scheer and M. Nüttgens. Aris architecture and reference models for business
process management. In Business Process Management, Models, Techniques, and
Empirical Studies. Springer, 2000.

46. J. Schäfer and A. Poetzsch-He�ter. Jcobox: Generalizing active objects to concurrent
components. In In Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP 2010), pages 275�299. Springer, 2010.

47. Y. Shoham. Agent-oriented programming. Arti�cial Intelligence, 60(1):51�92, 1993.
48. H. Sutter and J. Larus. Software and the concurrency revolution. ACM Queue,

3(7):54�62, 2005.
49. T. Van Cutsem, S. Mostinckx, E. G. Boix, J. Dedecker, and W. De Meuter. Ambi-

enttalk: Object-oriented event-driven programming in mobile ad hoc networks. Chilean
Computer Science Society, International Conference of the, 0:3�12, 2007.

50. W. M. P. van der Aalst and A. H. M. ter Hofstede. Yawl: yet another work�ow
language. Information Systems, 30(4):245�275, June 2005.

51. Work�ow Management Coalition (WfMC). Work�ow Reference Model, January 1995.
52. A. Zöller, L. Braubach, A. Pokahr, T. Paulussen F. Rothlauf, W. Lamersdorf, and

A. Heinzl. Evaluation of a multi-agent system for hospital patient scheduling. In-
ternational Transactions on Systems Science and Applications (ITSSA), 1:375�380,
2006.

