Compact and Efficient Agent Messaging

Kai Jander and Winfried Lamersdorf

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg
{jander | lamersd}@informatik.uni-hamburg.de

Abstract. Messages are considered to be a primary means of communi-
cation between agents in multi-agent systems. Since multi-agent systems
are used for a wide variety of applications, this also includes applications
like simulation and calculation of computer generated graphics which
need to employ a large number of messages or very large messages to
exchange data. In addition, other applications target hardware which
is resource constrained by either bandwidth or processing capacity. As
a result, these applications have different requirements regarding their
messages. This paper proposes a number of useful properties for agent
messages and evaluates them with regard to various types of applications.
Based on this evaluation a message format for Jadex called Jadex Binary
is proposed, which emphasizes properties that are not traditionally the
focus of agent message formats and compared them to some well-known
formats based on those properties.

1 Introduction

Multi-agent systems enable the development of scalable and highly dynamic
applications, facilitating their deployment on infrastructure such as structurally
or spatially distributed systems, and the integration of mobile devices in such
systems. An important means for agents to coordinate within an multi-agent
application are messages passed between them. This mechanism is one of the
enabling factors for autonomous behavior of agents, which enables them to be
protected from direct influence by the rest of the system and establish a measure
of robustness.

Nevertheless, certain classes of applications deployed on such systems have
special requirements which appear to be in conflict with the focus of traditional
agent message formats. Examples of this type of applications include real-time
audio and video communication, distributed simulation and real-time distributed
computer generated image (CGI) animation.

Traditionally, these requirements have not been the focus of agent messaging,
which tends to target other useful properties that can also be important in multi-
agent applications. As a result, it would broaden the application scope of agent
systems if they specifically supported the requirements of such applications by
providing an alternative message format.

In the following section we will attempt to identify typical requirements for
agent messages and distill some that are especially important to the aforemen-
tioned classes of applications. We will then introduce some typical message for-
mats used in agent systems and attempt to identify which application require-
ments they attempt to fulfill. Finally, we will present a compact message format
that caters to the special class of application with real-time and bandwidth-
restricted sets of requirements and compare it to traditional agent message for-
mats, demonstrating key advantages for this special set of applications.

2 Features of Agent Message Formats

Since multi-agent applications cover a large spectrum of potential applications,
there is an equally large number of features associated with agent messages
which are potentially useful for different classes of applications. In addition to
different application classes, different points in the development cycle may also
emphasize the importance of certain features over others. While there is a large
number of arguably useful features, we propose the following six features which
are commonly mentioned and requested for multi-agent applications:

— Human Readability allows humans to read messages with standard tools like
text viewers without the help of decoders or other special tools.

— Standard Conformance requires messages to conform to a published message
format standard or language standard, allowing interaction between systems
conforming to those standards.

— A Well-formed Structure defines a valid form for messages, allowing the
system to distinguish between valid and invalid messages.

— Editability goes beyond human readability by allowing users to edit and
restructure messages using standard tools such as text editors.

— Performance describes the computational requirements to encode and de-
code messages.

— Compactness evaluates the size of encoded messages.

In order to evaluate these features, we propose an example set of four com-
mon classes of applications. While there are many more potential applications,
these applications are very common and would benefit from the use of agent
technology. The first type of applications are real-time applications, where la-
tency is a primary concern. Examples of this type of application can be found
in any real-time communication application such as voice or video conference
systems. High latency is generally unacceptable in such applications and may
severely inhibit their functionality.

The second type of applications are cross-platform applications. For example,
Agentcities[1] allows the use of multiple agent platforms and multiple types of
agents, requiring precise definitions and standards among them. Correct inter-
pretation of messages from other agents or platforms is key for such applications.

Another common type of applications involve enterprise backend applica-
tions. These applications often run on application servers on high-performance

intranets. It is important for such applications to provide quick access to the
services required by the business in order to maintain high productivity.

The final type of applications are mobile applications, where a large number of
nodes in the application are physically mobile and are typically connected using
wireless connections. This means that the nodes are often restricted in terms of
computational resources and network bandwidth. Energy supply is a key factor,
stipulating modest use of resources even when more would be available.

Cross-platform Enterprise Backend
Real-ti icati icati icati Mobile
Human il low medium low low
Standard Conformance low high medium low
Well-formed Structure low high low low
Editable low medium medium low
|Performance high low high high
lc high low low high

Fig. 1. Importance of message format features for different types of applications

Figure 1 shows the application types and the importance of the message
format features. Some application types such as real-time applications and mo-
bile applications have similar feature importance profiles for different reasons.
While latency requires prudent use of resources for real-time applications, it is
the energy and physical restrictions that make it a necessity for mobile applica-
tions. For cross-platform application the ability to interpret messages is key, so
a standard-conformant and well-formed message format takes precedence over
compactness and performance. Enterprise backend applications are more mixed,
in that while the intranet typically provides abundant bandwidth, the large
number of requests still requires good performance.

While an agent may have the option to open raw connection to other agents,
bypassing the platform messaging service and supplying its own encoding and
protocol, this is usually not advisable for the following reasons: On the one hand,
developing an efficient transfer protocol involves a non-trivial amount of effort.
It would therefore ease development effort if the agent message layer could be
used. On the other hand, the agent system may be running within a restricted
environment. For example, enterprise applications typically run on servers where
the communication is tightly controlled for both support and security reasons.
As a result, an agent may not be allowed to make connections outside what is
provided by the agent platform.

Furthermore, there is another aspect concerning application development.
In practice, there is often a distinction between the development phase of an
application and production use in a business. For example, during development,
applications often include additional logging and debug code to identify faults,
include the use of assertions to validate program invariants and use tests to
validate functionality. During production use, these features are often omitted
in favor of higher throughput or lower latency.

D Production
Human il high low
d Conformance medium medium
IWell-formed Structure high low
i high low
Performance low high
C low high

Fig. 2. Importance of message format features during development and production use

Figure 2 demonstrates this difference between the two stages with regard to
agent message formats. During development the ability to easily read and modify
messages supports the developer in finding protocol errors and other implemen-
tation errors. In addition, a well-formed structure allows the use of validation
tools to ensure message correctness; however, this changes during production
use. Good encoding and decoding performance and message compactness aids
both system throughput and latency. During production use, this takes prece-
dence over issues like message readability, since the development has completed
and it is no longer necessary for humans to read agent messages.

The next section will take a look at common agent message formats that have
been traditionally used by multi-agent systems and show how well they support
the proposed message format features. This will show that there is potential for
improvements for both performance and compactness if other features are less
of a concern.

3 Related Work

Over time, multi-agent system have used a variety of message formats. Early
system used simple ad-hoc languages in string-based formats; however, this re-
sulted in languages that were specific to the application and made it difficult for
multi-agent systems to interact. As a result, languages were developed to allow
interchange between agent applications and agent platforms. One early attempt
at defining an agent language was the Knowledge Query and Manipulation Lan-
guage (KQML) [2]. However, it was quickly recognized that a standard language
is useful for allowing communication between different agent systems.

Accordingly, the Foundation of Intelligent Physical Agents (FIPA) proposed
two standards, the FIPA Agent Communication Language (ACL) [3] for the
message structure and a specific language for the message content called FIPA
SL [4] with different levels of complexity reaching from FIPA SLO to FIPA SL2,
both of which are used in popular agent platforms such as Jade [5].

This distinction between structure and content is retained in later formats
as well. For example, while the Jadex Agent Platform [6] only uses a single
XML-based format called Jadex XML, it distinguishes between message and
content encoding. However, it uses Jadex XML for encoding both the message
and content. Since the bulk of the message for the types of applications being
targeted tends to be the content, the focus of this paper will be content encoding.

Nevertheless, as demonstrated by Jadex XML, the same principles can be applied
to message encoding as well.

FIPA SL Java Serializati Jadex XML Jadex Binary
+

Human Readability
[Standard Conformance
Well-formed Structure
Editable

Performance

(RN EE K AN
[(EENE RN

+|

Fig. 3. Feature support by different methods of agent content encoding

When considering the agent format features proposed in Section 2, it becomes
clear that even though some features are well-supported, other features were
not the focus for those formats (cf. Fig. 3). For example, FIPA SL as a text-
based format is quite readable and editable by humans, provides a definition
of a well-formed structure and is a standard for agent messaging with wide
support for many agent platforms. Jadex XML on the other hand, while not
being a widely-used standard, has a well-defined and openly accessible schema
and allows a human user to easily read and edit agent messages. Nevetheless,
neither compactness nor performance seem to be the focus for either language.
This is likely due to compactness and performance being in conflict with other
features. For example, a compact format tends to be hard for humans to read.

The Jade platform recognizes the need for compact messages with good per-
formance in some applications. It supports these features by adding content
objects to messages, instead of a string-based content, but discourages this ap-
proach for lack of standard conformance. Jade uses the Java language serializa-
tion feature[7] to encode such messages; however, while this approach is fairly
compact and certainly providing good performance, it has multiple drawbacks.
First, for a number of reasons listed in the specification it only supports classes
that explicitely declare to implement a marker interface. While it is trivial to
add the interface to classes, the source code of classes used in legacy applications
may be unavailable. In addition, some useful built-in classes like BufferedImage
do not implement this marker interface and there is no way to easily retrofit
the serialization system to support this class. Furthermore, there appear to be
compatibility issues, requiring a versioning convention using a marker field and
carefully monitoring of the Java Virtual Machines used by the system. Finally,
as we will show, the compactness of the serialization format can be further im-
proved upon, especially without an additional compression cycle.

In the next section we will introduce an agent message format for Jadex
called Jadex Binary which focuses solely on the compactness and performance
features. This message format will be an alternative to the default Jadex XML
used by Jadex, which can be used by application that have a strong need for those
two features and do not require feature better supported by Jadex XML. We

will then evaluate this new format based on the performance and compactness
features based on a comparison with other agent message formats.

4 Format Description

Since the primary goal of the Jadex Binary format is to emphasize the com-
pactness and performance properties of the format, it uses binary instead of
string-based encoding. The primary concern is the serialization of the objects
representing the message, such as, but not exclusively, ontology objects. In addi-
tion, some techniques are employed to prefer the compact encoding of common
cases of data over rare cases, providing some simple compression based on the
meta-information available from the objects and typical use cases. The format is
based on a set of techniques to encode primitive types which are then used to en-
code more complex data. The following subsections will start with the primitive
types and then proceed to more complex types.

4.1 Variable-sized Integers

A key concept used in Jadex Binary are variable-sized integers. The goal is to
encode unsigned integer values in a variable-sized format that encodes small
values with less space than larger ones. The technique is based on the encoding
technique of element IDs in the Extensible Binary Meta-Language (EBML)|g],
which again is based on variable encoding scheme used for UTF-8|9].

Bytes Format Value Range
N 0to 127
2 O 1#HHHHI B 128 to 16511
3 00 1#HHHHE HHHHHHEHE R 16512 to 2113663
4 000 1#HHE HHHHHHEHE #HHHEHRE R 2113664 to 270549120

Fig. 4. Examples of variable-sized integers and their value ranges

A variable-sized integer is byte-aligned and consists of at least one byte (cf.
Fig. 4). The number of zero bits starting from the highest-order bits before the
first one-valued bit denotes the number of additional bytes called extensions that
belong to this variable integer. The rest of the byte is then used to encode the
highest-order bits of the integer value, the extensions then provide the lower
order bits of the value. This value is then shifted by a constant equal to the
end of the previous value range plus one. This technique of storing integer value
uses less space to encode small values at the expense of additional space of high
values.

The next part will describe how the format encodes boolean values which can
be used in to extend variable integers to support negative values. Furthermore,
variable integers are also heavily used as identifiers during string encoding.

4.2 Boolean Values

At first glance, encoding boolean values appears to be trivial since it only re-
quires storing a single bit. However, a data stream that is not byte-aligned re-
quires a considerable amount of processing to shift and pad bits during encoding
and decoding, impacting the performance property of the format. As a result,
a byte-aligned format is preferable. The Java language solves this issue by sim-
ply using a full byte to encode a single boolean value, however, this approach
wastes almost 88% of the available space, which is incompatible with a compact
language format.

Message Data

Virtual Value
No actual data
stored here

101170000

Value supplied
by previously
read bit field

‘ Result: 1 ‘ Result: 0 ‘

Fig. 5. Encoding of boolean values in the message: The first boolean value writes a
byte-sized bit field that is reused by the next seven values

As a result, multiple boolean values are packed into a single bit. This is
accomplished by writing a full byte where the first boolean value is written and
updating that byte whenever additional boolean values are added (cf. Fig. 5).
When the byte is filled with eight boolean values, another byte is written to the
stream when the ninth boolean value is written. While the update cycles require
some additional overhead on the part of the encoder, by having to update an
earlier part of the byte stream, it reduces overhead for the decoder. During
decoding, the byte is read when its first boolean value is read and then buffered
for later reads.

This approach enables efficient storage of boolean values. This can be com-
bined with the variable integer encoding to provide support for signed variable
integers by writing a boolean sign flag before writing the absolute value as a
variable integer.

4.3 Strings

Since string values tend to occupy a large part of typical messages, string en-
coding is a key part to ensure compactness. When a string is written by the

encoder, it is first checked if the string is already known. If not, the string is
assigned a unique numerical ID and added to the set of known strings called the
string pool.

First occurrence Unique
. D ize
in the message

TRefe rence

Repeated occurrences Unique
in the message b

UTF-8-encoded
String

Fig. 6. When a string is occured for the first time in a message, it is encoded in full
and assigned a unique ID allowing later occurences to be encoded by referencing the
ID

The encoder then uses variable integer encoding to write the ID to the stream
(cf. Fig 6). The string is then encoded using UTF-8 and its encoded size is written
to the stream as a variable integer, followed by the encoded string itself. If the
string is already known by the encoder, the encoder simply writes its ID as a
variable integer, avoiding duplicate storage of the string.

Since the number of unique strings in a message is usually less than 128,
a single byte is sufficient to encode any following occurence of a string using
variable integer encoding. Furthermore, the size of strings tend to be short,
generally less than 16511 bytes or even 127 bytes, especially if few characters are
used outside the first 128 unicode characters is used, allowing the string size to
be encoded in one or two bytes.

All strings share the same string pool, whether it is used to encode an actual
string value of the object or if it is used for other internal purposes such as type
encoding. This maximizes the chance of finding duplicate strings in the pool,
reducing message size.

4.4 Other Primitives

Other primitive values consist of integer and floating point types byte, short,
int, long, float and double. All of these values are simply translated into network
byte order[10] and added to the message. The only exception are 32-bit integer
values. In many cases, these values are used as a kind of default integer type.
For example, the Java language treats all untyped integer literals as this type.
This leads to a disproportionately large set of 32-bit integer values to consist of
mostly small numbers.

As a result, we found it to be advantageous with regard to the compactness
property to encode 32-bit int values as variable-sized integers in the message
data. While this can lead to large values exceeding the 4 bytes occupied by a
32-bit integer value, for common values the size is actually lower than 4 bytes,
providing an overall net advantage in terms of size.

4.5 Complex Objects

Complex objects are needed to encode messages containing objects derived from
ontologies such as concepts and their relations. It is also needed to encode sub-
objects such as attributes. Aside from certain special cases which are discussed
in the following subsections, complex objects generally have a type or class and
contain a number of fields that can either be primitives or other complex objects.
For this reason they can be traversed recursively, encoding each sub-object it
contains as a complex object. The encoder only needs to keep track of objects
that have already been encountered in order to avoid reference loops (Object A
containing Object B containing Object A) and encode object references instead.

Complex Object

Number of = Sub-Obiject

Class Name Sub-Objects = Field Name

Sub-Object

Fig. 7. A complex object is encoded using its class name, the number of sub-objects
and pairs of field names and encoded sub-objects

As a result, the format for complex objects can be straightforward (cf. Fig 7).
It starts with the fully-qualified class name, defining the type of the object. This
is written to the message data using the string writing technique described in
Section 4.3. Since some sub-objects may not be defined (i.e. reference null), not
all of the sub-objects need to be encoded. Therefore, the class name is followed by
the number of encoded sub-objects. This number is written to the message data
as a variable integer as described in Section 4.1. Then the sub-objects are written
by first writing the name of the field in the object containing the sub-object,
then recursively encoding the sub-object itself. During decoding, the decoder
first reads the class name and instantiates an object of that class. It then reads
the number of sub-objects and finishes by decoding the sub-objects themselves,
adding them to the object fields using the appropriate accessor methods.

Generally, it is expected that the objects offer accessor methods as described
in the Java Bean specification and the encoder will only encode fields for which
such accessor methods are available. However, using annotations, a class may
declare that the encoder should encode the field regardless of the existence of
accessor methods. In this case the fields are accessed directly using the Java
reflection API.

4.6 Arrays

Arrays are encoded in a manner similar to complex objects, starting with the
array type and concatenating the number of array components and the compo-

nents themselves. However, since the array type already provides type informa-
tion about the array components, this information can be used to reduce the
amount of information that needs to be stored in the message. The array en-
coding therefore supports two modes, a raw mode which is used for primitive
type values and a complex mode for objects. In raw mode, the components are
just written without additional information about the type of each component.
This can only be done in case of primitive types for two reasons: First, primitive
types cannot be subclassed, thus the array type is always sufficient to derive the
component type. Second, primitive values are passed by value and do not have
a null reference that requires special encoding.

This is not the case for objects. The array type may only refer to a super-
class of the component object and the component object may simply be a null
reference. This means that type information about each array component needs
to be included. However, in most cases it is safe to assume that the array type
describes the type of the component. Therefore, each component is preceded
by a boolean value indicating whether further component type information is
stored or if the type information can be derived from the array type. Only if this
flag indicates that type information is stored, for example when dealing with
subclasses or null values, the flag is followed by the type information. Otherwise,
the component object is directly appended after the boolean flag.

In the next section we will evaluate Jadex Binary in terms of the performance
and compactness features and compare it to three other message formats. This
was done with a number of tests in which the message formats were measured
and evaluated.

5 Evaluation

In order to evaluate the performance and compactness feature of Jadex Binary,
we conducted a series of tests. The experiments were conducted using an Intel
i5 750 processor with four cores clocked at 2.67 GHz. The machine was supplied
with 8 GiB of memory; however, the Java heap size was limited to 2 GiB. The
Java environment used was the Oracle Java SE 6 Update 31 which was running
on a current version of Gentoo Linux compiled for the x86-64 instruction set
with an unpatched Linux 3.2.2 kernel.

The content formats used were FIPA SL, the built-in Java serialization, Jadex
XML and Jadex Binary. The Jade agent platform 4.1.1 using the BeanOntology
was used as a representative of Java SL encoding. A test class representing
an agent action was used as data set to be encoded. The agent action sample
contained a 514 byte string literal, a second string containing a randomized long
value encoded as string, a single integer value, an array of 20 integer literals,
an array of boolean values and finally an array of objects of the class itself to
represent recursively contained sub-objects.

For the compactness tests, this array contained 100 further instances of the
class, which itself had the field set to null. For the performance tests, the number
of objects in that array was varied, starting at 10000 objects and increasing in

steps of 10000 up to 100000 objects. The compactness was measured by counting
the number of bytes of the encoded content. If the encoded content was a string,
it was converted to a byte representation using UTF-8 encoding (other encodings
like UTF-16 would have been possible but would have resulted in worse results).
For the performance, the time between start and end of the encoding cycle was
measured, other tasks like encoder and object setup were not considered.

In the following, we will present the results of both the performance and the
compactness features. While the test data is certainly artificial, we have tried to
supply what we think is a good cross-section of possible data cases.

5.1 Performance

In order to avoid interference with lazy initialization procedures and the just-in-
time compilation of the Java VM, all performance tests were run twice, with the
results of the first test run being discarded. This allowed the Java environment to
compile the code and the encoding framing to initialize constants during the first
pass so that the real performance figures could be obtained during the second
pass.

25000
20739
20000
—~ 15000
12
E
£ 10000
'_
5000 2717 3196 3609
2172 1077 1361 1692 2057 2377 2 —
¢ » 4 X 4i_+—ﬂ
0 t_ﬁﬁ) - =
0 20000 40000 60000 80000 100000
Number of Objects
—— Jade FIPA SL —— Jadex XML —%— Java Serialization —#&— Jadex Binary

Fig. 8. Results for the performance measurements, Jade FIPA SL encoding requiring
a disproportionally long time

The result of the tests can be seen in Figure 8. While all encoding time
measurements seem to increase linearly with the number of objects, the FIPA
SL encoding provided by Jade appears to require an unusually long time. As
expected, both Jadex Binary and the Java serialization mechanism provide sub-
stantially better results; however, even Jadex XML which is not intended to be

optimized for this format feature still offers substantially lower encoding times
than Jade FIPA SL encoding.

4000 3609
3500
3000
2500
2000
1500
1000
500 g1 102 126
0 — — — :
0 20000 40000 60000 80000 100000

Number of Objects

Time (ms)

147 16 291

—o— Jadex XML —¥%— Java Serialization —&— Jadex Binary

Fig. 9. Performance results using the same data set as Fig. 8 with Jade FIPA SL
encoding excluded

Figure 9 provides a closer look at the three highest performing formats.
While Jadex Binary clearly provides an advantage over Jadex XML by roughly
a factor of two, the Java serialization is almost an order of magnitude faster.
Initial analysis seems to suggest this is due to the use of the Java Reflection
APT used by both Jadex XML and Jadex Binary, which the Java serialization
mechanism can avoid due to its built-in nature. However, Java serialization has
further drawbacks as outlined in Section 3, meaning it is not a general solution
to the problem and has a more narrow scope of environments in which it can be
useful.

5.2 Compactness

In order to test for content compactness, the test object was passed to the
encoder and the number of bytes of the encoded object was measured. Since the
test object contained a fair amount of test data, the resulting content sizes were
expected to be large.

As can be seen in Figure 10, the differences between the four formats are quite
substantial. Jadex XML is barely half the size of the FIPA SL encoding and both
Java serialization and Jadex Binary are substantially smaller still. In fact, Jadex
Binary clearly provided the most compact representation of the test object,
being smaller than even the Java serialization format by a factor of roughly 2.5.

Content Size

160000
140000 136743
120000

100000

o
L
& 80000 74673
£
g 60000
3

40000

24903
20000 - 10420
0 I
Jade FIPA SL Jadex XML Java Serialization Jadex Binary

Fig. 10. Content sizes in bytes after encoding the object using the message format
without compression

A fair amount of this is likely to be due to redundant information, especially of
string values, which Jadex Binary can exploit (though Jadex XML uses a similar
mechanism). In addition, text-based formats like FIPA SL and Jadex XML use
a large amount of redundant strings to represent their formatting, such as tags
in the case of XML.

In order to test this assumption, another set of tests was performed, which
were identical to the previous tests but added an additional compression pass,
converting it to the gzip-format, which uses the DEFLATE algorithm[11] to
reduce data redundancy.

Content Size (Compressed)

7000

6119
6000 5635
5000
4542 4241
8 4000
[1]
c
= 3000
8
[2)
2000
1000
0
Jade FIPA SL Jadex XML Java Serialization Jadex Binary

Fig. 11. Content sizes in bytes after encoding the object and further compressing the
format with gzip

The results shown in Figure 11 substantiate the assumption. The DEFLATE
algorithm drastically reduced the redundancies in both FIPA SL and Jadex XML
with FIPA SL now even coming out ahead of Jadex XML. Nevertheless, both

Java serialization and Jadex Binary still show an advantage in compactness with
Jadex Binary maintaining a slim margin over Java serialization.

6000

5098
5000

4000 3609

3000

£
g 2006
F 2000 1831
1000 873
0 I
Jadex XML Jadex XML Jadex Binary Jadex Binary Java Java
(compressed) (compressed) Serialization Serialization

(compressed)

Fig. 12. An additional compression pass increases total encoding time

Since the compression pass substantially reduces the size of messages, es-
pecially for verbose formats, it may suggest that starting out with a compact
format gives only a marginal advantage. However, data compression is not free in
terms of computation time. While compression helps compactness, this issue has
to be weighed against the performance message feature. Despite the DEFLATE
algorithm being a comparably fast compression algorithm, Figure 12 shows that
it adds a substantial amount to the total encoding time of the content. In fact,
the additional time required seems to grow with the number of bytes in the
uncompressed content, which is reasonable considering the algorithm must eval-
uate every byte of the uncompressed data at least once to produce a reversible
output.

As aresult, data compression does not appear to be generally beneficial when
both performance and compactness are important; however, it is another useful
tool to adjust the balance between the two language features. In the next section
we will discuss further improvements, future work and provide a conclusion on
the performance of Jadex Binary.

6 Future Work and Conclusion

The evaluation of Jadex Binary in Section 5 appears to provide sufficient evidence
that Jadex Binary already has significant advantages in both compactness and
performance. However, the performance results of the Java serialization shows
that further performance improvements may be possible. One way of further

reducing the overhead of Jadex Binary is to reduce the use of the Java Reflec-
tion API to access complex objects. This could be accomplished by injecting
bytecode-engineered delegate classes which use direct method calls to retrieve
and set bean properties.

In addition, the encoder and decoder of Jadex Binary are largely indepen-
dent of the Jadex platform. It would therefore be possible to include the message
format in other agent platforms, thereby allowing them to offer an alternative
compact message format for agent communications for certain types of applica-
tions.

Overall, Jadex Binary is both able to represent agent messages in a compact
form and perform in a reasonably fast manner. Since these two features were
the primary goal of Jadex Binary, it does so by sacrificing others like human
readability. Nevertheless, if those features are important, other established lan-
guages already provide sufficient support. The addition of Jadex Binary allows
a developer of a multi-agent system to pick the kind of format that provides the
best match for the requirements of a specific application and switch the format
depending on state of the application in the development cycle.

References

1. S. Willmott, J. Dale, B. Burg, P. Charlton, and P. O’Brien, “Agentcities: A World-
wide Open Agent Network,” Agentlink News, vol. 8, November 2001.

2. T. Finin, J. Weber, G. Wiederhold, M. Genesereth, D. McKay, R. Fritzson,
S. Shapiro, R. Pelavin, and J. McGuire, “Specification of the KQML agent-
communication language — plus example agent policies and architectures,” Tech.
Rep. EIT TR 92-04, 1993.

3. FIPA ACL Message Structure Specification, Foundation for Intelligent Physical
Agents (FIPA), Dec. 2002, document no. FIPAQ0061. [Online|. Available:
http://www.fipa.org

4. FIPA SL Content Language Specification, Foundation for Intelligent Physical
Agents (FIPA), Dec. 2002, document no. FIPA(00008. [Online|. Available:
http://www.fipa.org

5. F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi, “JADE - A Java Agent De-
velopment Framework,” in Multi-Agent Programming: Languages, Platforms and
Applications, R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, Eds.
Springer, 2005, pp. 125-147.

6. A. Pokahr and L. Braubach, “From a research to an industrial-strength agent
platform: Jadex V2,” in Business Services: Konzepte, Technologien, Anwendun-
gen - 9. Internationale Tagung Wirtschaftsinformatik (WI 2009), H.-G. F. Hans
Robert Hansen, Dimitris Karagiannis, Ed. Osterreichische Computer Gesellschaft,
2 2009, pp. 769-778.

7. J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language Specification
Third Second Edition. Addison-Wesley, 2005.

8. C. Wiesner, S. Lhomme, and J. Cannon, “Extensible Binary Meta-Language
(EBML),” Website, http://ebml.sourceforge.net/, 2012.

9. The Unicode Consortium, The Unicode Standard. Addison Wesley, 2006.

10. P. Hoffman and F. Yergeau, “UTF-16, an encoding of ISO 10646,”
RFC 2781, Internet Engineering Task Force, 2 2000. [Online|. Available:
http://www.ietf.org/rfc/rfc2781.txt

11. L. P. Deutsch, “DEFLATE Compressed Data Format Specification version
1.3,” RFC 1951, Internet Engineering Task Force, 5 1996. [Online|. Available:
http://www.ietf.org/rfc/rfc1951.txt

