
Electronic Contracting with COSMOS — How to Establish, Negotiate
and Execute Electronic Contracts on the Internet

F. Griffel, M. Boger, H. Weinreich, W. Lamersdorf
VSYS - Computer Science Dept. - University of Hamburg
(griffel | boger | weinreic | lamersd) @ informatik.uni-

hamburg.de

M. Merz
Ponton Hamburg

merz @ ponton-hamburg.de

Abstract

Today, the Internet gains more and more attraction
even for small companies to contact business partners
and to automate cooperation between each other. How-
ever, the smaller the company the higher the relative
setup costs that are required if the complete process of a
commercial transaction is to be supported. We propose
COSMOS as an Internet-based electronic contracting
service that facilitates commercial partners with offer
catalogues, a brokerage service, contract negotiation
and signing as well as contract execution. The COSMOS
architecture supports these functions in an integrated,
unified way. The design and execution of contracts inte-
grates patterns from the CORBA Joint Business Object
Facility.

Keywords
Electronic Contracting, Electronic Commerce, Java,

CORBA, Business Objects, Componentware

1 Introduction
Every commercial transaction that crosses organiza-

tional boundaries is accompanied either implicitly or
explicitly by a dedicated contract. This contract repre-
sents the commitment of each involved party to fulfill the
defined obligations and it grants each party a corre-
sponding right to receive a certain service, a good or a
payment from the other.

In the economics literature, three main phases are
distinguished for a commercial transaction [4, 5] (see
also Fig. 1):
• in the information phase, market participants gather

for possible transaction partners, compare product
specifications and prices, and evaluate offers.

• After contacts have been established between partici-
pants, offers and counter-offers are exchanged during
the negotiations phase. This negotiation process may
either lead to a situation where agreed terms and
conditions have been reached or the negotiation is
abandoned.

• After all participants committed their participation in
the contract with their signature, assets are ex-
changed during the execution phase. This phase may
take from a few seconds up to several years.

Service
Offer &
Request
Catalogue

Information Negotiation Service Execution

Range of
Policies,
Options

Fig. 1: Business Transactions’ Phases

1.1 Electronic Contracting

So far contracts have usually been treated as merely
text documents. But the concept of a contract is ideally
suited as an integration point for a system and applica-
tion level infrastructure designed to support all phases of
a commercial transaction: A contract represents gathered
information, agreed terms and conditions, and steps to
fulfill mutual commitments in a formal way, combined
into one structured document. This well-defined nature
of a contract makes it a good candidate not only to be
handled by, but also to control an electronically auto-
mated system. Since such a system is then driven by a
contract as a single central resource a high degree of
consistency and ease of use could be achieved.

1.2 High Transaction Costs

Under realistic conditions, the contracting process in-
duces high transaction costs. Usually these costs occur as
labour costs within the organization or as costs for third-
party assistance. The most common costs are:
• Information costs. They occur as market surveillance

costs due to lacking market transparency. Rating
agencies, publishers and other information providers
earn from commercializing their advanced insight as
third parties during this phase.

• Negotiation costs. Negotiation can be a lengthy proc-
ess which comes at high labour costs and additional
other costs from legal assistance, from possible mis-
takes in contract structure and handling. Also the
signing of a contract is a complex procedure, par-
ticularly when it involves a high number of parties.

• Execution costs. The management of the execution of
a contract raises general coordination and surveil-
lance costs Parties may even fail to satisfy their con-
tractual role during the performance phase which
couldcause penalty costs for e.g. not maintaining
deadlines.
For the following considerations, we assume a share

of transaction costs which could be considerably reduced
by using electronic contracts if a proper balance of auto-
mation, standardization, business organization and legal
regulation is achieved.

1.3 Balance and Complexity

Such a proper balance requires a quite complex serv-
ice infrastructure with well-defined interfaces to different
systems and business processes - most probably already
existing.

The most prominent example of an approach to help
automating and integrating interorganizational business
processes may be the Electronic Data Interchange (EDI).
EDI message exchange is quite successful, but it is kind
of a “passive” data transfer leaving users with making
decisions and triggering actions manually. In fact, it does
not integrate systems and people, but only makes them
interoperate.

This is achieved through a high degree of standardi-
zation and formality, but new and individual business
processes and entities may require the design of new and
unique EDI message formats. Therefore, establishing
EDI may be too expensive or unsuitable for a small com-
pany whose product-portfolio is small or quickly chang-
ing.

On the other hand, today’s Internet technologies offer
a widely available infrastructure as a base of interopera-

tion, but lack support of defined and agreed formats spe-
cific to different business domains.

The COSMOS project amis ate providing an infra-
strucure that allows the integration of all phases of a
contract in an electronic form, based on object oriented
internet technology. While EDI is mainly a data ex-
change technology for simple “forms”, COSMOS estab-
lishes a technology to create quite complex “forms”
(contracts) in an easy way, supports their semi-automated
filling and even the execution of the resulting or implicit
business processes for negotiation. This allows even
small companies to take advantage of an electronic sup-
port of their business transactions, by reducing the over-
head during the information phase and giving the op-
portunity not only to offer new services and goods, but
also to use those offered by others in an ad-hoc manner.

Finally, COSMOS aims at supporting the negotiation
and execution phases by letting the constructed contract
actively influence the processing of itself. Due to the in-
tegrated, semi-automated construction of the contract,
the COSMOS system is able to consistently include exe-
cution definitions (or “flow information”), that can
automatically drive the contract’s fulfillment.

1.4 Organization of the paper

The rest of this paper is organized as follows: Section
2 illustrates the application background and the Business
Model for an Electronic Contracting Service. For the
sections following, however, we focus on architectural
issues of the COSMOS Electronic Contracting Service.
Therefore, section 3 presents the technological building
blocks of COSMOS and particularly its underlying Busi-
ness Object model. Then, section 4 outlines the archi-
tecture and the component-based modeling of a
COSMOS contract in more detail and how the brokerage
process contributes to the information included. Also, the
contract’s control over its own execution is described.
The remaining sections discuss some next steps in the
COSMOS design and development and conclude the
paper. Further literature on the remaining aspects and
technical details is available from the COSMOS home
page http://www.ponton-hamburg. de/cosmos.

2 Application Background
Contracts may have a number of variation points (or

degrees of freedom). To clarify the application field for
COSMOS uses, some variations of contractual relation-
ships are given:
• Number of roles: Usually two roles are defined, e.g.,

„buyer“ and „seller“ or „landlord“ and „tenant“.
However, some contracts may be closed between three
parties who organize a circular transfer of goods. In

the case of constructions, contracts are closed be-
tween one developer and a set of subcontractors, each
providing a separate service.

• Number of parties: In simple cases contracts are
closed between two parties, where each party plays a
single role. However, in complex cases one role may
be played by a set of parties, e.g. two tenants, or sev-
eral buyers who purchase goods from a retailer.

• Number of related contracts. Often different types of
contracts are related in a „transactional“ way, such
that either all of these contracts are signed or none of
them is considered as legally (and therefore semanti-
cally) correct. An example is the combination of a
real estate purchase with a mortgage contract.

• Inter-contract dependencies. Finally, the contract
may be related to already given contracts such as
framework contracts, memos of understanding, regu-
lations, legislation, or each party’s business terms.

• Human participants vs. Software Agents. Usually, a
contract party is represented by a human or actually is
a human being. In the Electronic Contracting sce-
nario, a company may be represented by a specialized
software agent which follows a given negotiation
policy and works on or with entities belonging to the
particular company. These entities (people, dates,
products, departments etc.) are represented as Busi-
ness Objects, i.e. encapsulated data taking care of its
own presentation and modification by carrying addi-
tional code. Such an BO directly models a concept
from the application domain and assures a high de-
gree of consistency. This is especially important for
an distributed infrastructure like COSMOS support-
ing team-work and collaboration of several people
and / or systems.

2.1 An Example

Before analyzing the technological Framework for the
Electronic Contracting Service, an exemplary situation is
given for a compound contract that can be supported by
the contracting service.

In the case of purchasing real estate property, usually
a mortgage contract is closed between the buyer and a
bank. This situation involves two related contracts - one
between the buyer and the seller and one between the
buyer and the bank. These contracts only make sense
when they are closed in a „transactional“ way.

Further, certain events may occur during the perform-
ance of the contract: buyer and seller need to be notified
by the official land registry when the property right has
been transferred, the buyer needs to be notified when
payments of interest and mortgage installments to the
bank, are due. Finally, services from several further par-

ties may be used in order to perform the contract: a no-
tary needs to be involved to avoid repudiation of the
contract, several financial and administrative authorities
may be involved, etc.

To facilitate the complex procedures required for
property purchases, not only the organizational relation-
ships of the parties should be defined in a contract but
also the process definition which enables a workflow
system to automatically execute the contract after being
closed. Further, the contract should be recyclable, i.e., it
should exist in a template form that allows for further
refinements and different business adaptations. Applied
to the example above, the contracting service should
comprise a notification mechanism that indicates for
each party when a certain action needs to be taken.

2.2 Business Model

From the organizational viewpoint, we model the fol-
lowing roles for contracting participants:
• COSMOS Provider: It is assumed that the electronic

contracting service is provided by a trusted third party
- e.g., a bank, a public authority, a notary, or any
other organization that has a good reputation to act as
a neutral facilitator.

• Market participants. Legal entities that offer and de-
mand services through the COSMOS service.

• Parties. Market participants that participate in a
contract.
In this setting, a contract is an entity that defines

roles, parties, obligations, rights and further terms and
conditions for its parties. Contract negotiation is moder-
ated and contract execution is monitored by the
COSMOS provider. The advantages to business in hav-
ing this market support in place are tremendous: reduced
time to market, support of virtual enterprises, increased
efficiency and reduced cost.

3 Technological Foundation
This section presents some technological background

that is important to understand some of the architectural
design decisions explained in the section hereafter.

3.1 Business Objects as a base for smooth inte-
gration

As one of the basic architectural concepts for the
COSMOS service, the CORBA Business Objects Archi-
tecture (BOA) approach has been chosen [6]. Business
Objects provide a standardized set of components that
can be deployed, inspected, and integrated across organ-
izational boundaries at runtime.

The BOA gives the ability to specify frameworks of
independent business application components. Given
this, the pieces necessary for a component marketplace
are put in place. However, coherence will not be guaran-
teed without distributed business object standards, the
opportunity for application-level, large-grained compo-
nents that represent business functions (orders, ledgers,
customers) or even processes [cmp. 16].

The synergistic effect of BOA standards and the gen-
eral usability of components is a precondition for the
COSMOS market to become a reality. The BOA defines
the concept of business system domains (BSD) which are
distributed object systems that apply to particular busi-
ness domains, execute under the control of the associated
business entity or organization, and maintain a consis-
tent, recoverable representation of that business domain
[6].

A BSD could represent a department of a large or-
ganization, a small company or even a virtual enterprise
which is established just for the execution of single tasks.
However, from the electronic contracting point of view, a
BSD represents a contracting party and the services pro-
vided by the party.

One distinct concept of the Business Object Model is
the Adapter. It is used by a market participant to provide
a logical access point to other BSDs’ Business Objects.
This preserves a company’s autonomy of choosing its
internal data modeling and assures a higher level of ac-
ceptance for a BO-driven architecture. Technically, the
adapter can be compared to a CORBA client stub which
may be instantiated separately from the CORBA object.
However, in contrast to the stub, the adapter doesn’t only
map 1:1 the object API to the client side. It also allows to
provide meta-information on the related Business Object,
local logic, and a set of methods that may differ from
those of the stub.

Supplier I

Customer

Adaptors
Business Objects

Supplier II

Business System Domains

Retailer

Fig. 2: Business System Domains

An adapter can thus be included as a component in
other participants’ local software systems. The adapter is
exactly that part of an organization’s object framework
which is intentionally given away to the „outer world“
(see Fig. 2).

Accordingly, the Electronic Contracting Service
should provide an editing tool that allows users to select
market participants by inspecting their respective adapt-
ers on an application level. If this participant is to be
included as a contract party, the provided information is
used to assign events and methods of the business objects
and by doing this, single steps of a workflow are defined
as a part of the contract.

3.2 Dynamic Data Types using Feature Struc-
tures

In object oriented strongly typed programming envi-
ronments dynamically generated data has to confer to the
static type system of the used framework. The usual way
to bypass this situation is to express dynamic data infor-
mation with name-value pairs. These can either be typed
using simple types as string and integer, or contain an
extra field for type information expressed as string. How-
ever, this is considered as a conceptual break with object
orientation since this approach only support abstraction,
typing, polymorphism and encapsulation in a very poor
manner.

In the COSMOS project dynamic data structures play
an important role. Service offers, contract templates,
legal issues need to be described in a coherent way, but
only evolve in a spontaneous manner as response to
changing market and juridical conditions and can thus
not be described in a static type system and name-value
pairs are considered as insufficient.

As a solution to this conflict a technique known as
„feature structure“ [21, 22] has been chosen to represent
dynamic data and types. A feature structure is a typed
and structured collection of name-value pairs used to
represent attributes of an object. They can recursively be
built conforming to type information and structured in an
inheritance hierarchy that also allows multiple inheri-
tance.

Powerful unification and matching algorithms for
feature structures exist.

We have extended feature structures to not only con-
tain values but also references to real objects so that ob-
jects can be stored, retrieved and accessed from them.
Thus feature structures allow a smooth incorporation
with the rest of the object orientation and component
based design. For example, a print service can be de-

scribed as a feature structure that contains some name-
value pairs like quality and price, a feature structure de-
scribing the paper and a reference to the business object
adapter of the service provider.

3.3 Implementation Platform for Distribution

The COSMOS project is designed for a highly distrib-
uted environment and based on object oriented internet
technology. State of the art for such environments is Cli-
ent/Server style programming with downloadable clients
and platform independent portable implementations of
the servers. A combination of CORBA, Java and legacy
systems is usually appropriate.

In the case of COSMOS though, object migration is a
desirable feature that pure Client/Server style program-
ming fails to provide. Electronic contracts, business ob-
jects and adapters should be shippable to the site where
they are needed or administrated as appropriate in a
changing and developing infrastructure. Therefor Voy-
ager[15], a Java-based ORB that provides mobility of
objects and is compatible with CORBA, has been chosen
as implementation platform for COSMOS. Also, experi-
ments with extensions to Java that directly incorporate
object migration and object grouping into a language
called Dejay (Distributed Java) [20] are ongoing.

4 The COSMOS architecture
To create a flexible and adaptable architecture with a

couple of distinct but smoothly integrated functionalities,
COSMOS has some clearly separated building blocks:.
• Online catalogues. Information on market partici-

pants can be obtained today either through search en-
gines or through yellow pages databases such as, e.g.,
the SMARTS online catalogue for business services
(www.smarts.org). However, both approaches lack
the required selectivity for a sector-specific collection
of QoS attributes that help market participants to
formulate a precise specification of the requested
service or good.

• Brokers act on behalf of market participants to form a
group of potential contract parties. They require both
access to online catalogs and QoS specifications from
their customers. Selection policies and navigation
interfaces enable customers to use brokers in a flexi-
ble way.

• Contract negotiation support. Negotiation can be
understood as the collaborative editing of a contract
as a structured document. Each modification is then
considered by the other party as an offer and may be
returned as a counter-offer or a rejection. Contract
negotiation may also be accompanied by additional
measures such as telephone and video conferencing

support. The main goal of negotiation support is to
ensure, first, an integrated and consistent document
processing, second, the possibility to control the ne-
gotiation process by a specific negotiation protocol [1,
2], and third, to allow negotiating parties to get at-
tached in different ways to the contracting service.

• Signing support. Any document that is edited collabo-
ratively can be signed by the participants by mecha-
nisms known from public key systems [8]. The pre-
condition is the existence of a unique externalized
representation of the shared document that can be
signed. If human users are involved in contract nego-
tiation, the „what you see is what you sign“ motto
should be followed, i.e., a visual representation of the
document should be rendered. To prevent fraud, the
signature service has to verify that all participants
signed the same version of the document.

Offer
Catalogue

Brokerage

Market
Participants

Negotiation Signing Workflow
Execution

?

COSMOS Service

Fig. 3: Functions of an Electronic
Commerce System

• Contract execution support. Finally, workflow soft-

ware is usually applied to coordinate the performing
of activities by defined roles in a defined order. Such
technologies should be applicable for the contract
execution phase.
Each of the function mentioned above can be indi-

vidually deployed and used by market participants. How-
ever, their respective added-values vary drastically: while
online catalogues are used as an island solution already
today, the other components require high set-up efforts if
not integrated as a chain of interworking services. The
COSMOS architecture thus specifies interfaces and
functions of these components such that they act as
building blocks of an integrated „one-stop service“ (Fig.

3). Thus the COSMOS approach to tackle transaction
costs is both automation and integration of the required
software components:

4.1 Contract Object Model

COSMOS addresses the integrated support of all
transaction phases. This is accomplished by using a co-
herent contract object model.

A contract could be considered as structured docu-
ment composed out of text blocks. In this case, the edit-
ing process may be simple, however, the automated proc-
essing of a contract will be very limited. On the other
hand, one could attempt to cover the full semantics of a
contract by building a „contracting expert system“. We
consider this as a dead end since the expert system over-
head is expected as too high – particularly in an Small
and Medium Enterprises (SME)/Internet context, char-
acterized by a permanent change of rules, roles, and
business subjects.

As a trade-off, the COSMOS contract model aims to
identify only those semantically meaningful parts of
contract instances which allow for efficient automation
and therefore highest increase of the added value.

Fig. 4 gives an overview of the main component
classes of the COSMOS contract model:

The parts of the contract model can be distinguished
by their subject:

 Fig. 4: The COSMOS Contract Model

• The Who part: Parties, Persons, and Signatures are
related to the participants of the contract. Parties act
under a certain role defined by the contract template.
They are instantiated as a legal entity which can be in
turn a person or an organization. The first may, the
latter must be represented by proxies. „Party“ only
indicates that the legal entity is involved in the con-
tract and abstracts away from the actual tasks which
are defined for the corresponding role. Finally each
legal entity is associated with a signature when the
contract has been closed.

• The What part is the subject of the contract. It covers
all obligation of the involved parties. Each obligation
is considered as a transfer of a right which can be ei-
ther a good, a service, money, or a license. An im-
portant feature of the obligation is a list of QoS at-
tributes that can either carry a value or a type infor-
mation. It is used for contract templates to specify
suitable parties. During contract negotiation, these
QoS attributes are subjects of offers and counter-
offers. Finally, obligations are to be carried out in the
basis of these attributes during contract execution.

• The How part defines relationships between obliga-
tions: when are which services to be delivered? What
is the deadline? Which clause will apply when a party
falls behind its obligation? The „How“ part is used to
derive a workflow that defines causal relationships,
data transfers, delays and deadlines, and the final
termination of the execution phase.

• Finally, some Legal clauses form the fourth part of a

Contract

Person
Name

Address
Reference to Profile
Further Attributes

Party Subject

Performance
Identification

Contract Element
id

Payment
Amount
Currency

Mehtod of Payment

Right (Licence)

Transaction Step

Legal Person

 Represented
Natural Person

Date of Birth

1 1

 Receiver/
 Sender

Log

Paragraphs

Clause
Type

Identification

Interneal Clause
Text

1

*

1

Fixation

Signature
Date

Location

Compound Contract

*

Who WhatHow
Execution

Notarization

Signature

1

External Clause
Reference

Role
jur. Type

Identification

Phase
Current Status

*

1 *

*

2..*

1 1

1

Activity
Identification

Period/ Point in Time
Pre-/Postcondition

*

Authority
Certificate
Signature

* 1

Legal

QoS
Name
Value

Specification

 Natural Person
Date of Birth

1

1

*

1

Proxy

11

*

1

*

1

1

1

*

Good

Service

1
*

111

1

*

 1 2

11

1

contract. These clauses address general terms and
conditions at the level of the contract. Also references
to applicable external contracts, regulations, and leg-
islation are placed in this part.
Apart from the structural perspective, a contract goes

through several steps in line with the transaction phases:
• Initially, a contract template is defined, which usu-

ally predefines the „How“ and the „Legal clauses“
parts. Additionally, roles are defined and for each
obligation a requested set of conditions. However, the
template does not yet identify the contract parties nor
the exact obligations. It can carry type information
like „party“ is-a „real-estate broker“ and the „good“
is-a „arable land“. Instead of attribute/value pairs
(such as „price per acre“ = $100, „ground’s humid-
ity“ = 20%), constraint expressions are used as QoS
specifications (such as „price < $150 and humidity <
30%).

• By using a broker, the template will be completed if
suitable providers can be retrieved from the cata-
logue. The broker’s task is to assemble type-
conforming offers, requests and contract templates
and replace QoS specifications with the correspond-
ing values offered. For each category of obligations a
corresponding offer category is required for the cata-
log. Accordingly, the party objects of a contract tem-
plate are replaced by the respective participant de-
scription taken from the catalog. If the brokerage step
leads to a completed contract that can be signed in
principle, a contract proposal is given.

• During negotiation, contract proposals can be ex-
changed between the parties. Depending on the se-
mantics of such a contract transfer, it may either be
considered as a proposal (without legal binding) or as
an offer (with legal binding if the other parties ac-
cept). If all parties accept, the contract is in an agreed
state and ready for signing.

• After all parties (or their proxies) signed the contract,
the electronic contracting Service certifies this.
Afterwards, the contract is executable, i.e. in techni-
cal terms, it can be transferred to the workflow sys-
tem.

4.2 The brokerage process

The COSMOS approach to brokerage refers back to
the ODP/CORBA trader service [7, 10]. Here the trader
model defines two roles, exporter and importer:
• The exporter registers a service offer at the trader by

specifying its service type. This is composed out of an
interface type (i.e. the method signatures) and a set of
service attribute types. For the referred service type,

service attribute values are provided and stored in the
trader’s offer database.

• On the other hand, the importer specifies the re-
quested service type by the interface type and a con-
straint expression for the service attributes.
If the requested service matches one or more of the

stored offers, references are returned to the importer. For
the contracting service, this technology is used in an
analog way: market participants register their adapter as
well as their specific offer attributes at the catalogue.
Since one participants may register several services, dif-
ferent adapters may be required. In turn, for each service
type, different offers may be registered [3]. A 1:N rela-
tionship between participants and adapters as well as
between adapters and offers will thus be maintained.

Fred

Rule

Rule

Rule

SuppSvc

Mike

 Land
 Registry

Office

 Andy’s
 Real
 Estate

Regulation Authority

 Buyer

Seller

 Broker

SET NotarySuppSvc Rule

Role SuppSvc

Contract

2..n

0..n

0..n

0..n

 Fig. 5: Relations within a contract

For standardized services (such as the land registry
office), equally standardized adapters can be deployed.
I.e., the service type corresponds with the adapter class.
However, if non-standard services are sought the offer
database of the catalogue needs to be browsed by the
contract creator.

4.3 Component-based Contracts

Since market participants are represented through
Business Objects, it is assumed that each participant has
registered his adapter in the catalogue. A set of offers is
associated with each adapter. If a certain offer has been
detected as a query result, the corresponding adapter will
be provided to the client.

Regarding the contract model, Adapters as well as
offer descriptions are integrated in the following way:
• Every Person class contains the type information and

an adapter object in the contract model and
• Every Performance class contains a set of QoS attrib-

utes that has been taken from the offer attribute set,
the type information describing it and an adapter to
its business object..
In the subsequent phase, negotiation means to modify

values of QoS attributes, types and references to business
objects and to transfer the contract among the parties
involved. To properly access contract clauses, the
COSMOS contract editor (CCE) is used. This editor

allows to visualize and manipulate clauses in a comfort-
able way: meta-information provided by adapters can be
introspected and used to map an event of one party to a
method of another one.

Similar to, for example, the JavaBeans event model
[11], this approach facilitates the definition of providers
and receivers of services and allows a „(re-) wiring“ of
the concrete business object components filled into the
original contract-template.

COSMOS’ approach to guarantee consistency and
provide smooth integration is using business objects
(BOs). BOs are stored in a company’s database and may
represent its people, goods etc. By directly registering
these BOs as mediatable services or contracting parties
with the COSMOS contract broker (CCB) any change or
mistake in the representation of a BO’s data is avoided.
Using adapters for the registration may protect (not
making it visible or accessible) parts of a BO and allows
it to stay within the database originally hosting it.

Furthermore, the BOs’ adapters are included into the
contract assuring consistency again. Also, we gain the
object-oriented paradigm’s advantage of encapsulation
and combination of data and code: A BO contained in a
contract can represent itself in an adequate way within
the CCE. It can control the correctness of its wiring
during the negotiation phase as well.

The main problem in choosing such a BO approach is
the mapping of business objects to databases. On the one
hand, there is a model of an active, complex entity com-
prising data and code which should be retained during
the whole transaction to gain a high degree of consis-
tency and self-automation. On the other hand, existing
database systems that are powerful enough (regarding
speed and scalability) to support real-world COSMOS’
applications employ relational data models and stored
procedures. Thus, to retain the advantages of the BO-
view to the overall architecture but being applicable in
practice, COSMOS defines an abstraction layer for the
database access. This layer allows to use relational as
well as object-oriented databases and is able to wrap a
company’s legacy DBMS.

Storing contracts (and even their templates) suffers
from a similar representation problem. COSMOS’ con-
tracts are based upon an object oriented model that is
able to describe a contract’s structure as well as its
building blocks (cmp. Fig. 4). This model can be mapped
to an XML (Extensible Markup Language)
[www.w3.org/XML] model. Both the object model as
well as the XML model can directly be used to transmit
and display the contract during the negotiation phase and
to store the contract. However, for signing a contract the
XML representation is preferred since it is in a linear

and man-readable form which is important for legal is-
sues.

But the storage representation of this model is non-
trivial, since the relationships of the described compo-
nents (BO-adapters) and the components themselves
have to be maintained within the database while being
extractable as efficiently as possible.

Since the subject of a contract has been defined and
stored including these relationships, a workflow engine
will be capable to derive relevant information for the
execution phase of the transaction.

4.4 Contract Execution

The information gathered within the contract during
earlier phases directly allows to derive a workflow to
execute a contract. The a signed contract contains much
information that can be used to lead the contract to its
fulfillment. In a usual text based contract this informa-
tion is implicitly given through the components relations
and the „legal clauses“ and sometimes explicitly as a
graph representation like with a Gant diagram.

Using an electronic and object oriented approach this
information together with extra information that is in-
cluded in a contract template or provide by or service
provider. This information is kept in the contract object
model and can due to the object encapsulation be
guarded consistent or can present itself with corre-
sponding viewing objects. A graphical representation of
a workflow based on petri-nets can then be generated
from the contract. The reason to make the flow-model
explicit firstly is to allow its manual editing by a user
during the negotiation phase supplementing it with steps
or correlations that cannot be expressed implicitly. Sec-
ondly, the explicit graph-model can be utilized more
easily to drive the COSMOS workflow engine (CWE).

This workflow representation can be used in two ways
to execute the workflow. In the first approach, the CWE
is an abstraction from real-world workflow systems
which has adapters to different workflow environments,
automatic ones as well as ones based on notifications of
humans for example using email. Basically, the CWE
itself is an interpreter for colored petri-nets [13]. The
petri-net model has been chosen since its expressive
power comprises the wide variety of more or less power-
ful workflow descriptions used in nowadays workflow
and groupware environments [14].

The contract’s explicit flow-model mentioned above is
represented as a PAMELA program interpreted by the
CWE. The Petri-net based Activity Management Execu-
tion Language (PAMELA) in fact is an textual descrip-
tion of extended colored petri-nets [9].

Single activities triggered by the COSMOS workflow
engine are mapped to method calls of the participating
business objects. Since these BO originally were issued
by companies’ offering themselves or their services and
goods to the COSMOS contract broker, each BO
„knows“ its interface to an individual company’s envi-
ronment. Thus, the contract’s components are able to
directly contact and drive a company’s workflow system
in a consistent and correct manner [cmp. 18].

For companies not having established their own inter-
nal workflow system COSMOS additionally includes a
second self-installing workflow environment based on
Object-Space’s Voyager technology [15]. In this envi-
ronment each activity within a flow is modeled as an
active object (derived from the corresponding BO-
adapter) that is migrated to a Voyager server-process
installed at each participating contracting party. Again,
this can be achieved automatically by analyzing the con-
tract’s information regarding mutual relationships of its
components. Each activity corresponds to a transition in
the underlying petri-net model.

The places needed by such a model are represented as
JavaSpaces that can be distributed between the contract-
ing parties or be hold centrally within the

CWE. Altogether, this results in a data-driven
workflow implemented as a distributed petri-net. The
neat advantage of this environment is the direct inclusion
of all participants and the self-driven flow triggered by
the BO-adapters contained in the signed contract.

 This system will be described in full detail in another
paper. Fig. 6 depicts the resulting overall architecture of
COSMOS.

Fig. 6: COSMOS Electronic Contracting Ref-
erence Architecture

5 Implementation status and ongoing work
The early COSMOS development dealt with carefully

designing the contract model and its XML representa-
tion. Also, some contract templates have been built to
allow to experiment with the contracting process. A first
prototype of the broker is ready to use utilizing a single
simple database adapter to Oracle DBs, but lacking the
full expressive power for representing complex BOs yet.
Until having fully specified and implemented the
COSMOS catalogue service, for experiments, the OSM
catalogue [www.osm.org] is used. The contract editor’s
prototype can already be used to edit QoS specifications
and offers within the contract. The graphical representa-
tion of the resulting workflow is in an early development
stage (just presenting not modifiable yet). Security and
signing [cmp. 19] employs the current JDK 1.2 betas and
will be supplemented by COSMOS’ own security-policy
manager in near future. Regarding the workflow execu-
tion some early experiments have been conducted utiliz-
ing a Lotus Domino system. But the analyzing and sur-
veying phase of existing workflow environments has not
been finished.

On the other hand, the automatic deduction of
PAMELA descriptions and their execution by the CWE
already work and COSMOS’ own Voyager-based
workflow environment has been implemented
prototypically.

Right now, most work is done elaborating on the da-
tabase mapping of business objects as well as the con-
tracts themselves. Relational and object-oriented models
are under investigation and the possibilities of the direct
inclusion of XML constructs are explored. Also, the use
of PJama [17] as a fully persistent OO-system and its
interaction with the contract model are examined.

6 Conclusion
Electronic Contracting is a promising application of

today’s open Internet-technology based environments
with their relatively small set-up costs allowing even
small companies to utilize them. On the other hand,
contracting comprises some well defined phases and ac-
tions and a supporting architecture should consider all of
them in an integrated and easy to handle manner. In
particular, the autonomy of companies’ data models and
legacy systems should be retained while supporting con-
sistent and standardized methods for interoperation and
collaboration. COSMOS’ approach to do so is the conse-
quent utilization the business object concept throughout
its infrastructure combined with corresponding adapters
minimizing the reciprocal action on companies’ internal
data and processes. In COSMOS contracts are viewed as
a kind of active documents that are able to control their

Contract
Templates

Participants

Companies’
Services & Data

as BOs

Catalogues

CC-Broker
1

2

5

4

3

Contract
Proposal

Contract Negotiation

CC-Editor CC-Editor

CC-EditorCC-Editor

Phase I Phase II

own modification and may influence at least part of their
environment. This point of view is supported by highly
structured document meta-models expressed with XML
allowing to capture even some of the semantics of the
described documents, at least assuring their consistency.
The advantages of the BO-approach have to be proven
in real-world scenarios yet, particularly regarding per-
formance, handling and computational overhead. None-
theless, COSMOS provides an infrastructure well-suited
to elaborate upon such scenarios and doing further re-
search in this quite promising direction.

7 References
[1] J. S. Rosenschein and G. Zlotkin. Rules

of Encounter - Designing Conventions
for Automated Negotiation among Com-
puters. MIT Press, 1994.

[2] T. Tu, F. Griffel, M. Merz, and W. Lam-
ersdorf. Generic Policy Management for
Open Service Markets. In: H. König, K.
Geihs, and T. Preuß, eds., Distributed
Applications and Interoperable Systems,
DAIS’97 Cottbus, Germany, pp. 211-
222, Chapman & Hall, 1997.

[3] M. Merz, T. Tu, W. Lamersdorf: „Dy-
namic Support Service Selection for
Business Transactions in Electronic
Service Markets". In: Proc. Intl. Work-
hop on Trends in Distributed Systems,
Aachen 1996, Springer, Berlin, Heidel-
berg New York 1996, pp. 183-195

[4] B. Schmid: "Electronic Markets". In:
Wirtschaftsinformatik, 35 (1993) 5, S.
465-480.

[5] Z. Milosevic: „Enterprise Aspects Of
Open Distributed Systems“, PhD. Thesis,
Department of Computer Science, Uni-
versity of Queensland, 1995.

[6] Business Object Domain Task Force:
„Combined Business Object Facility“,
BODTF-RFP 1 Submission, OMG
Document No.: bom/97-11-09.

[7] K. Müller-Jones, M. Merz, and W.
Lamersdorf. The TRADEr: Integrating
Trading Into DCE. In K. Raymond and
L. Armstrong, eds., Open Distributed
Processing: Experiences with Distributed
Environments, Proceedings of the 3rd

IFIP TC 6/WG 6.1 International Confe-
rence on Open Distributed Processing pp.
476-487, Chapman & Hall 1995.

[8] B. Schneier, „Applied Cryptography“,
John Wiley & Sons, 1996.

[9] K. Müller-Jones, M. Merz, and W.
Lamersdorf, Kooperationsanwendungen:
Integrierte Vorgangskontrolle und
Dienstvermittlung in offenen verteilten
Systemen. In F. Huber-Wäschle, H.
Schauer, and P. Widmayer, eds., GISI 95
- Herausforderungen eines globalen In-
formationsverbundes für die Informatik,
Zurich, pp. 518-525, Springer 1995.

[10] AT\&T, DSTC, DEC, HP, ICL, Nortel,
and Novell. Trading Object Service,
OMG Document No.: orbos/96-05-06,
Version 1.0, 1996.

[11] Sun Microsystems, Java Beans 1.01 API
Specification, www.javasoft.com/beans/
spec.html 1997.

[12] G. Booch, J. Rumbaugh, and Ivar Jacob-
son. Unified Modeling Language User
Guide, Addison-Wesley, 1998.

[13] K. Jensen. Coloured Petri Nets: Basic
Concepts, Analysis Methods and Practi-
cal Use, Springer 1992.

[14] OVUM Workflow Computing. OVUM
Report, London 1995.

[15] ObjectSpace. Voyager - Core Technolo-
gy User Guide, 1997, www.objectspace.
com/voyager/documentation.html.

[16] http://www.ibm.com/Java/SanFrancisco/
technical.html, 1998.

[17] http://www.sunlabs.com/research/forest,
1998.

[18] I. Claßen, H. Weber, and Y. Han. To-
wards Evolutionary and Adaptive
Workflow Systems - Infrastructure Sup-
port Based on Higher-Order Object Nets
and CORBA. In Proceedings of the First
International Workshop on Enterprise
Distributed Object Computing, EDOC'
97, pp. 300-308, Australia, IEEE 1997.

[19] Z. Milosevic, D. Arnold, L. O'Connor,
Inter-enterprise Contract Architecture
For Open Distributed Systems: Security
Requirements, WET ICE'96 Workshop
on Enterprise Security, Stanford, USA,
June 1996.

[20] M. Boger. Migrating Object in Electronic
Commerce Applications,Working Conference
on Trends in Electronic Commerce,
TREC’98, Hamburg, Springer, 1998.

[21] A. Zeller, G. Snelting. Unified Versioning
through Feature Logic. Informatik-Bericht
No. 96-01, revised version, TU
Braunschweig, Feb. 1997.

[22] B. Carpenter. The Logic of Typed Feature
Structures. Cambridge University Press,
1992.

