
Electronic Communications of the EASST
Volume 37 (2011)

Workshops der wissenschaftlichen Konferenz
Kommunikation in verteilten Systemen 2011

(WowKiVS 2011)

Towards NFC-Aware Process Execution for Dynamic Environments

Kristof Hamann, Sebastian Steenbuck, Sonja Zaplata

12 pages

Guest Editors: Horst Hellbrück, Norbert Luttenberger, Volker Turau
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Towards NFC-Aware Process Execution for Dynamic Environments

Kristof Hamann1, Sebastian Steenbuck2, Sonja Zaplata1

1Distributed Systems and Information Systems
Computer Science Department, University of Hamburg, Germany

{hamann |zaplata}@informatik.uni-hamburg.de

2Saarland University, Germany
s9sestee@stud.uni-saarland.de

Abstract: A flexible execution of business processes requires to deal with dynamic
environments and to adapt to specific situations detected at runtime. However, flex-
ibility needs to be restricted in a reasonable way which fits the requirements of the
process initiator. An important aspect is the specification of user-defined constraints
with respect to the non-functional characteristics (NFCs) of the execution. However,
most existing approaches for such descriptions and corresponding service selection
mechanisms are computationally complex and thus hinder a flexible runtime dis-
tribution of the process including resource-restricted clients such as, e.g., mobile
devices.

This paper addresses the problem of NFC-aware process execution in such dynamic
environments. Therefore, the paper presents an NFC meta-model and a correspond-
ing language to support process modelers in expressing their non-functional require-
ments in a way which facilitates runtime decomposition and to dynamically derive
local NFC specifications from remaining global requirements on process level by
more simple heuristic approaches. Based on that, an initial algorithm is introduced
in order to evaluate NFCs during runtime.

Keywords: Business Process Management, QoS, Flexibility

1 Introduction

One of the major challenges in execution and management of business processes is to cope with
increasingly dynamic environments. To allow for the required flexibility, Service-Oriented Archi-
tectures (SOA) provide a paradigm to support the rapid, low-cost and non-complex composition
of distributed applications [PTDL08]. In an SOA, a network of loosely coupled services provide
the building blocks for composite services and finally leverage whole business processes. The
approach fosters the vision of a dynamic binding in order to take advantage of the heterogene-
ity and variability of available services. Thus, service selection is often not only controlled by
functional demands (i.e. the type of functionality and the service interface), but is also driven by
non-functional requirements such as costs, availability, response time, or security issues. Non-
functional requirements and offers, or – in general – non-functional characteristics (NFCs) of
a service denote all aspects which can be used by clients in order to evaluate service quality

1 / 12 Volume 37 (2011)



Towards NFC-Aware Process Execution for Dynamic Environments

[DLS05]. In consequence, non-functional characteristics are an important criterion to differen-
tiate between services which hold the same functionality, but which differ with respect to the
user’s needs in a current situation. For example, a business user accepts an advanced price for
high availability and short response time of a service, whereas a home user is often willing to
accept a time delay in order to reduce costs.

Considering business processes, non-functional characteristics can apply to single activities
(local statements) as well as to the whole process (global statements). As an example, the process
initiator may want to limit the costs for the whole process and additionally ensure that specific
activities hold other conditions, such as security encryption for the execution of confidential
tasks. During the execution, it has to be ensured that the activities of the process are executed by
only invoking those services which comply with the corresponding local and global statements.
In order to realize an NFC-aware execution of business processes, on the one hand, there has to
be a formal description of the local and global statements to be matched to the characteristics of
the available services [RCJ02]. On the other hand, an algorithm is needed in order to evaluate
the statements and to find a suitable set of services which fulfill the requirements with respect to
the business process model. In consequence, a large field of previous and ongoing research deals
with the analysis and specification of such requirements, the detection of available services and
the development of composition algorithms which, preferably, target at the identification of the
overall optimal set of services in order to optimize all given non-functional characteristics of a
process (cp. [YL05]). These approaches are well suited for relatively static environments where
service properties do not change very often and process instances are executed in a similar way,
so that the optimal configuration can be calculated in advance and the results of such complex
selection algorithms can be re-used in several process instance executions.

However, business process execution environments do not always provide such stability. The
need for flexible business collaborations and exploitation of external resources often require
an ad-hoc distribution of the process spanning several execution engines which also include
resource-restricted systems such as mobile devices (cp. [HHGR06, KZL06]). In such heteroge-
neous and dynamic environments, non-functional characteristics are even more important: Avail-
able services are characterized by a high level of dynamism in type and quality, and well known
stationary services can have completely different characteristics in mobile environments, e.g.
costs and allowed size of e-mails in contrast to SMS. In addition, formerly negligible character-
istics are now of essential importance, e.g. such as the location of process execution. Although
non-functional characteristics are hence a very important part of process execution in dynamic
environments, the necessity of evaluating non-functional characteristics at runtime and resource
limitations of participating systems disqualify many current approaches.

This work therefore investigates NFC-aware business process execution for dynamic environ-
ments where not only the control flow of the process but also the non-functional characteristics of
services and systems cannot be determined before the execution time of each single activity. The
basic idea of this approach is to specify user-defined NFC statements in a way which – as far as
possible – facilitates runtime evaluation of NFCs. Therefore, this paper is structured as follows:
Section 2 examines existing approaches and related work in the research field of non-functional
requirements for business processes. The main contribution is divided into two parts: Based on
existing standards, Section 3 introduces a language to describe non-functional characteristics and
corresponding statements with respect to their runtime evaluation. Subsequently, Section 4 intro-

Proc. WowKiVS 2011 2 / 12



ECEASST

duces an algorithm for selecting suitable services based on such pre-defined statements. Finally,
the paper is concluded in Section 5 by summarizing first results and ongoing research.

2 Background and Related Work

According to the two main challenges of an NFC-aware execution of business processes, this
section introduces corresponding fundamentals and evaluates related work for service selection
algorithms and description of non-functional characteristics.

2.1 Algorithms for Service Selection

Business processes are usually described by defining the control flow over a set of activities, each
representing one step of work to be done. In an SOA, every activity ai can be implemented by a
set of services Si, each providing the required functionality. This set can be provided at design
time or, in a dynamic environment, can be discovered at runtime. Based on the set of detected
services, a selection algorithm has to pick one service si,k ∈ Si for each activity ai to be executed.
This is done with respect to the non-functional characteristics c j of that service which can be
evaluated with a function Q(c j,si,k), if applicable. It is assumed, that services implementing the
same activity exhibit the same types of characteristics.

In a service composition, the process of finding a sufficient or optimal solution has to be per-
formed on two levels: On the local level, each activity is evaluated independently without taking
into account global requirements, such as an overall cost limit. On the global level, the entire
business process with its global requirements is examined. Finding solutions on the local level
is comparatively trivial because required characteristics can be compared to the characteristics
of available services. Furthermore, a weighting function which prioritizes the requirements can
be used in order to select an optimal solution. Assuming that there are m activities each with n
available services, this procedure has a complexity of O(n) for each activity and O(m ·n) for the
whole process. In contrast, the naive approach for global optimization is to evaluate every pos-
sible execution, which is in O(nm). This is reflected by the fact that the problem can be modeled
as the Multiple-Choice Knapsack Problem which is NP-hard [YL05].

In dynamic environments such as mobile ad-hoc networks, information about available ser-
vices and thus their corresponding characteristics often cannot be determined in advance. Thus,
non-functional characteristics have to be detected and evaluated at runtime based on the current
situation. In the worst case, this results in a step-by-step late binding of services which is ad-
vanced each time an activity of a process has to be executed. In particular, this means that it is
not possible to calculate an optimal configuration of service assignment for the entire process. In
consequence, many existing optimization techniques cannot be applied and algorithms of a high
complexity should be avoided in order to allow for an efficient service selection at runtime.

Based on these observations, the following assumptions help to reduce the problem: In a
dynamic environment, only a temporary optimization is possible because services with a better
quality can enter the system at any time. It should therefore be assumed that without waiting
for an infinite time an optimal solution cannot be achieved. Instead, selecting a suitable solution
which meets the range of declared requirements decreases time for service detection and thus
allows for keeping the number of suitable services as small as possible. If, e.g., a user is willing

3 / 12 Volume 37 (2011)



Towards NFC-Aware Process Execution for Dynamic Environments

to accept services with a response time ≤ 1 second, all compliant services are considered to
be equal – even if there is a single service with a much better quality, e.g. ≤ 1 millisecond.
Furthermore, in many cases optimization is not useful at all: For example, it is sufficient if
the stated requirement number of supported encryption algorithms ≥ 1 is fulfilled, but it is not
required that the number is maximized. Thus, service detection can be finished immediately if at
least one compliant service is found.

Second, as local characteristics can be evaluated with a low effort, global characteristics should
be decomposed to single activities as far as possible. Remaining global requirements need to be
evaluated by a low-complex service selection algorithm and require an appropriate handling of
the unknown behaviour of the process’s control flow, i.e. concerning the number of cycles and the
selection of alternative branches. As a simple (but unsatisfactory) solution it can be assumed that
a process has no cycles or branches. However, if this is not given, the number of passes through
the cycles and the number of selected branches can be estimated based on prior experiences, e.g.
by integrating application-specific knowledge about the probable execution of the process.

In case of mobile ad-hoc networks, it can furthermore be assumed that there is a relatively
small number of available services, that processes are comparatively short and that services are
not known until the process is executed.

In summary, this gives rise to the requirements for a suitable algorithm: low complexity,
rapid detection of a first compatible solution which can be optionally optimized later, and the
consideration of a user’s goal during the optimization. In the following, three relevant existing
approaches are investigated with respect to these requirements:

Discarding Subsets [JMG05] is a backtracking algorithm. It builds a tree containing the avail-
able services in a way that each level represents the decision for one activity. Hence, for each
possible combination of services there is a path through the tree. In order to reduce the effort,
subtrees are excluded if at least one non-functional requirement cannot be satisfied anymore, or
the current solution cannot become better than an already known one. However, the algorithm
will normally identify the optimal solution and thus needs the corresponding amount of time.

Berbner et al. [BSR+06] propose a two step algorithm: First, the non-functional characteris-
tics are translated in order to be optimized using linear programming on a relaxed problem. The
second step is to use a backtracking algorithm to find a valid solution for the original problem.

WS HEU [YZL07] is a heuristic-based algorithm consisting of three steps: First, a valid solu-
tion is found using a heuristic which requires that all characteristics use the same range of values.
Second, it tries to advance the detected solution by replacing single services until further replace-
ments would violate the requirements. In order to further advance the solution, replacements are
taken into account which violate the requirements, but which can be satisfied with an additional
replacement of another service.

While the focus of these algorithms is the maximization of the user’s value, the goal of this
work is to find an acceptable solution which can be derived at runtime and which is also suitable
for more resource-restricted devices. The approach of Discarding Subsets has the ability to
efficiently provide a sufficient solution if it is executed without further computationally intensive
optimization (cp. Section 4). However, to make use of such a heuristic approach, non-functional
requirements have to be specified in a way which supports their ad-hoc evaluation. The next
section therefore derives requirements for an appropriate meta-model and analyzes most relevant
corresponding description languages.

Proc. WowKiVS 2011 4 / 12



ECEASST

2.2 Languages for Describing Non-Functional Requirements

As a foundation for a runtime selection of services as introduced in Section 2.1, an appropriate
NFC description language should satisfy several requirements which are briefly motivated and
summarized in the following. The requirements 1 to 4 arise from the basic goal of an NFC-aware
process execution as described in Section 1, while requirements 5 to 7 result from the need for
an ad-hoc evaluation. In addition, the requirements 8 to 10 represent general goals in order to
support the development and modeling of non-functional characteristics.

1. In order to be applicable in the context of business processes, the language must be able
to define the composition behavior of NFCs for composed services. In particular, local
and global characteristics have to be specified unambiguously and in a way which allows
assignment to process parts.

2. Respecting differing user preferences, requires the definition of multiple profiles in order
to provide different levels of quality.

3. For reasons of interoperability, the technologies should be capable of being integrated into
existing standards, i.e. web service standards (compliance to standards).

4. Statements about services have to be fine-grained in order to differentiate between multi-
ple operations combined in one service.

5. The language must be usable for both service consumer and service provider in order to
express requirements resp. offers of services and processes. Otherwise, requirements
and offers have to be translated in a common language every time before comparison.

6. If two non-functional characteristics conflict, the language should provide a mechanism to
nevertheless allow an optimization. For ease of use, this should be done by allowing the
definition of priorities.

7. The functional and non-functional description of services should be syntactical separated
in order to allow a flexible adjustment of NFCs in case of changing conditions.

8. In order to ease modeling and enhance reusability, it should be possible to define new
characteristics by refining existing ones.

9. The description of characteristics should not be restricted to single application domains,
hence the language must be generically applicable.

10. In order to describe characteristics which are not realizable with the integrated concepts,
the language should be extensible.

Based on these requirements, several languages which formalize non-functional characteris-
tics have been studied. A short overview is presented in the following.

The Web Service Level Agreement (WSLA) language specification [LKD+03] allows the defini-
tion of Service-Level Agreements (SLA) with a focus on monitoring these SLAs. Therefore, the
language contains many constructs that are not needed for the pure description of non-functional
characteristics. The underlying model complies widely to the model used in this work, but it
does not support levels of quality.

WS-Policy [VOH+06] is a framework for providing policies on service quality and correspond-
ing policy requirements. Non-functional requirements can be integrated in the policies, but the
intension is rather to use external XML namespaces for domain-specific extensions. WS-Policy
integrates very well into other WS-* standards.

5 / 12 Volume 37 (2011)



Towards NFC-Aware Process Execution for Dynamic Environments

WSLA WS-Policy WSOL CQML HP Labs

Composition – – – – –
Levels of quality – + + × ◦
Compliance to standards + + ◦ – +
Fine-grained + + + × +
Requirements vs. offers + ◦ ◦ + –
Priorities – – – – –
Syntactical separation + + + × +
Refinement + ◦ ◦ + ◦
Generic applicability × × × + –
Extensibility + + + – –

good: + average: ◦ poor: – not applicable: ×

Table 1: Evaluation of existing description languages

The Web Service Offering Language (WSOL) [TPP02] allows the definition of non-functional
characteristics on different levels of quality. However, the required characteristics should be
defined in a separate language. Though, following the suggestion to use ontologies could be too
complex for resource-restricted devices.

Although the Component QoS Modeling Language (CQML) [Aag01] targets software com-
ponents, the approach can also be applied to services, because both a component and a service
describe functionalities with a well-defined interface. CQML describes non-functional charac-
teristics comprehensively and in a generic way. However, process flow is modeled directly in
CQML, whereas this work assumes the existence of an independent process description, e.g. a
WS-BPEL process. Furthermore, CQML is based on an EBNF syntax instead of XML.

Sahai et al. (HP Labs) examine [SDM01] when an SLA should be checked, which data should
be involved, where the monitoring should happen, what is assured and how it is assured. To
answer these questions, the work assumes that non-functional characteristics and requirements
are known at design-time. However, as shown, this is is not true for dynamic environments.

Table 1 summarizes the results of the analysis. Although none of the existing standards and ap-
proaches fulfill all requirements, a combination of WS-Policy and CQML would satisfy 8 of 10.
Therefore, Section 3 introduces an approach using WS-Policy and an enhanced approach based
on CQML in order to describe non-functional characteristics. With this enhanced combination
all 10 requirements can be met.

3 Description of Non-Functional Requirements and Offers

In order to model non-functional characteristics in a generic way, the underlying assumption is
that many characteristics have common properties and behavior. For example, both requirements
response time > 30 and price < 20 are measured numerically and exhibit a total order. In this
section, a language is introduced which can be used to define such properties of non-functional
characteristics in a generic way. With this approach, service provider and service consumer only
need to agree on a common semantic sense of the characteristics. However, this part is not within
the scope of this work. Rather, it is assumed that the participants have a common perception of

Proc. WowKiVS 2011 6 / 12



ECEASST

profile P1

statement p1 characteristic 1
statement p2 characteristic 2
statement p3 characteristic 3

profile P2

statement p4 characteristic 1
statement p5 characteristic 2
statement p6 characteristic 4

profile C1

statement c1 characteristic 1
statement c2 characteristic 2

profile C2

statement c3 characteristic 1
statement c4 characteristic 2
statement c5 characteristic 3
statement c6 characteristic 4

service

Service Provider Service Consumer

Figure 1: Model for describing non-functional characteristics (based on [Aag01])

identifiers such as price.
The presented language for describing non-functional characteristics and requirements is based

on a meta-model which has its foundation in the work of Aagedal [Aag01] as well as of Ardagna
and Pernici [AP06]. As shown in Figure 1, the main concepts are (non-functional) character-
istics, statements and profiles. The definition of characteristics include the above mentioned
properties and behavior of a specific non-functional characteristic, such as price. A statement
restricts the possible range of values for a characteristic. Both service provider and service con-
sumer can define multiple profiles in order to provide different service levels, each consisting
of multiple statements. Service providers can specify which values they offer, whereas service
consumers can provide their requirements.

In order to achieve the requirements presented in Section 2.2, this work uses a combination of
WS-Policy and an enhanced approach based on CQML. Profiles are realized with the capabilities
of WS-Policy. Non-functional characteristics and statements are expressed in an XML-based
language, which uses concepts and ideas of the non-XML language CQML replenished with the
missing constructs for composition and priorities. In the following, the elements of the meta-
model are described in more detail.

Characteristics Non-functional characteristics can be specified with the element characteris-
tic and are uniquely identified with a name. Characteristics can be either numeric or non-numeric
(set). Numeric characteristics have a type, e.g. integer or double. The direction (increasing or
decreasing) specifies if smaller or larger values are preferred. Restrictions in the range of values
can be added with an invariant element.

If the characteristic is used to describe the requirements of the whole process or parts, the
composition behavior needs to be clarified. For most non-numeric and some numeric charac-
teristics the statement can be processed locally (element local). This is e.g. true if a particular
encryption algorithm is demanded. Otherwise, a function has to be specified which aggregates
the local values of singular services into global values of a whole process (aggregate-function).
Depending on the characteristic, this can e.g. be sum, product, minimum, maximum or arith-
metic mean [AP06]. For parallel execution it is possible to incorporate all services or just the
critical path (element parallel). The critical path is the path with the worst characteristic values,
e.g. with the highest execution time [AP06].

Non-numeric characteristics are specified by its elements, i.e. a set of strings. Optionally, an
order of the elements and the direction towards better values can be specified if applicable. Con-

7 / 12 Volume 37 (2011)



Towards NFC-Aware Process Execution for Dynamic Environments

sidering service composition, the element local can be used if the characteristic can be checked
for each service independently. Otherwise, if an order exists, the minimum or alternatively the
union set is used.

Complex characteristics can be defined by declaring multiple characteristics using the element
composite. With the element specialized, an existing characteristic can be limited to a certain
range of values.

Statements Describing both NFC requirements and offers is done by constructing constraints
on characteristics. Likewise, statements can be defined by limiting the range of values of a simple
characteristic as well as of a complex characteristic, or by further limiting the range of values of
another statement. A priority helps if two statements are contradictory.

Profiles WS-Policy provides constructs to combine multiple statements (all) as well as to spec-
ify alternatives (ExactlyOnce), which can be used to define different service levels [VOH+06].
The resulting definitions can be integrated into existing WSDL files on behalf of the according
WS-Policy extension.

The introduced language can be used to specify both requirements of a service consumer and
NFC offers of a service provider. Both is done by using the statement element. To evaluate if
the NFC offers match the requirements, it has to be checked, if the offered values are a subset of
the required values: oi ⊆ ri. An offer’s profile O satisfies a requirement’s profile R if this is true
for every requirement statement: OstatisfiesR⇔ ∀r ∈ R : ∃o ∈ O : o ⊆ r. This can be used to
find appropriate services on the local level (cp. Section 2.1). A corresponding algorithm which
is able to check statements on the local and global level is introduced in the next section.

4 Dynamic Service Selection for NFC-Aware Processes

Service selection denotes the operation of picking one service from a set of available services.
The proposed algorithm for selecting services for process execution consists of three steps: In
the first phase, services not satisfying the local requirements are removed. The second phase is
a backtracking algorithm using a heuristic to find an efficient solution with respect to the global
requirements. In a final step, the detected solution is optimized rudimentarily. These three steps
are described in more detail in the following.

Evaluating local requirements Since evaluating local requirements needs much less efforts,
the algorithm begins the first step with attempting to transform global requirements into local
ones. This is only relevant for characteristics that are not already marked as local (cp. Section 3).
Numeric requirements can be transformed, if the aggregation function is minimum resp. maxi-
mum and the specified requirement is the minimum resp. maximum. Consider, e.g., a process
with the global requirement that the number of (redundant) network connections has to be at least
2 in order to strengthen reliability. As the aggregation function is minimum and the requirement
is minimum, it can be replaced by local requirements for each activity demanding at least two
network connections. Ordered non-numeric characteristics can be treated in the same way.

Unordered non-numeric characteristics can be used only for requirements with the structure
characteristic = value or its negation. When specified for a process, this means that the re-

Proc. WowKiVS 2011 8 / 12



ECEASST

S1,a

S2,a S2,b

S1,b

S2,a S2,b

activity 3

activity 2

activity 1

root node

Figure 2: Tree structure used for a heuristic-driven search

quirement has to be fulfilled permanently. Therefore, such a global requirement can directly be
evaluated on the local level for each activity.

In this step, each service’s NFC offers have to be compared with the local requirements and the
service can finally be removed from the set of suitable services if it is not adequate. Accordingly,
the complexity of this step is in O(n), where n is the number of services.

Evaluating global requirements The second step analyzes the remaining global requirements.
As shown in Section 2.1, this problem has a complexity in O(nm). Therefore, we propose to use
a heuristic which can find a suitable solution more efficiently. However, the basic data structure
is a tree – equal to the one used by [JMG05] (cp. Section 2.1) – which expands every possible
combination of services (cp. Figure 2). To avoid traversing the whole tree, parts of it are purged
if they are detected not to be able to fulfill the requirements anymore. In addition, a heuristic is
used to firstly select paths which are estimated to offer better results.

Beginning at the first level of the tree, the best suited node is selected consecutively on every
level. The decision is taken with means of a heuristic, which is described in detail later. Thus,
for every activity one service is chosen successively. A check at every level ensures that all non-
functional requirements are satisfied so far. If not, the part of the tree beginning at the current
node is purged and the algorithm proceeds with the next node.

Conditional branches can be realized in three variants: Firstly, for every possible path, a dis-
tinct solution is computed. However, this results in a higher effort for processes with many
branches. Secondly, the different paths are integrated into the search tree and only one valid so-
lution is found. This variant does not increase the effort significantly, but it fails when the process
engine chooses a path which does not correspond to the solution. The algorithm has then to be
started again. Thirdly, the introduced algorithm is paused when a conditional branch is reached
until the condition can finally be evaluated. In order to evaluate global requirements, estimated
values are used for characteristics on the basis of the average of the possible paths respectively
of the critical path.

However, while traversing the tree, a heuristic selects one of the available services at the cur-
rent level of the tree. To achieve good results, a heuristic needs knowledge about the application
context. Yu et al. assume for WS HEU [YZL07] that NFCs are stochastically independent and
uniformly distributed. However, real scenarios do not show these properties, e.g. availability,
throughput and quality are often closely tied to the price and typical values for availability are
above 90 %. In this work, it is assumed that services providing comparable functionality exhibit
akin ranges of values for their non-functional characteristics. Here, similarity is justified due to

9 / 12 Volume 37 (2011)



Towards NFC-Aware Process Execution for Dynamic Environments

ServiceSelection(REQ, A)
LocalSelection(REQ, A)
solution = GlobalSelection(REQ, A)
if(solution!=FAIL)

solution = Optimization(REQ, A, solution)
return solution

LocalSelection(REQ, A)
for each (act ∈ A)

for each (s ∈ act.getServices())
for each (qos ∈ s.getQoS())

if(! isFulfilled(REQ, qos, s))
A.removeService(s)

GlobalSelection(REQ, A)
global REQ, P, S
tree=initialize(tree)
return AnalyzeNode(tree.root)

AnalyzeNode(node)
if(isLeaf(node))

if(checkFullConst(REQ,node))
return node

else
return Backtracking()

else
if(checkConst(REQ,node))

return DescentTree(node)
else

return Backtracking()

DescentTree(node)
Boolean goodNodeFound = false;
for each(ws ∈ node.childs())

Boolean fulfilled = true;
Double score = 0
for each(qos ∈ ws.getQoS)

if(isFulfilled(REQ, qos, ws))
score=1∗qos.weight

else
fulfilled=false;

if(fulfilled)
P.push(ws)
goodNodeFound=true;

else
insertList(ws,score,S)

if(goodNodeFound)
return AnalyzeNode(P.pop())

else
return AnalyzeNode(S.first())

Backtracking()
if(P.size>0)

return AnalyzeNode(P.pop())
else if(S.size>0)

return AnalyzeNode(S.first())
else

return FAIL

Figure 3: Pseudocode of the algorithm for an NFC-aware service selection

the fact, that functional properties and local requirements for non-functional characteristics have
been already detected to be suitable according to the user’s demands.

Hence, to estimate the characteristic’s value for an activity that has not been analyzed so far,
the average of values for the according services can be used. This is uniquely done for each
activity. Now, it can be checked if the path going down from the currently selected node fulfills
the requirements. If so, the node is put on a stack of promising nodes P. However, if at least
one requirement is not satisfied, there might be nevertheless a valid path starting from this node.
The approximation of characteristics causes an uncertainty which will be inspected if none of
the promising nodes leads to a valid solution. Therefore, an ordered list of second-choice nodes
S collects nodes not fulfilling all the requirements, ordered by the weighted number of satisfied
requirements. The weight is defined by the user in order to achieve a uniform representation of
the characteristics for the case when a characteristic depends on multiple other characteristics,
e.g. the price is dependend on availability and throughput.

With this approach, promising paths are investigated as long as a requirement is violated. The
algorithm now uses backtracking to start again from the next promising node in the stack P or –
if the stack is empty – the best node from the list of second-choices S.

Proc. WowKiVS 2011 10 / 12



ECEASST

The complexity of this step is in O(m · n) to calculate the average values for each service,
where m is the number of activities and n the number of services per activity. The backtracking
algorithm is in the worst case indeed in O(nm), but in real scenarios, a valid solution could be
found very early due to the depth-first search. In the best case, one path is used to traverse the
tree without reverting to backtracking. Moreover, in mobile environments, n and m are typically
not very high, which leads to a good performance of the algorithm.

Optimizing the solution The second step of the algorithm is able to find a valid solution very
fast. Allthough this solution satisfies all the user’s requirements, it is not likely to be the best.
In the third step, the found solution can optionally be optimized with respect to a user-defined
weight function w j(x) which weights the values of non-functional characteristics c j. Therefore,
the benefit of a service si,k implementing an activity ai is measured as bi,k = ∑

n
x=1 wx(Q(cx,si,k)).

The optimization tries successively for each acitivity to find another service with a higher benefit.
If found, the selected one is replaced by the new service.

The complexity for this step is in O(m · n) since every service has to be investigated exactly
once. The weight function has to be supplied by the user and should implement a normaliza-
tion of the values as well. With this approach, a rudimentary optimization is achieved which
guarantees a fast execution time.

Figure 3 shows a simplified variant of the introduced algorithm for selecting services for a set
of activities A with respect to a list of requirements REQ. The main procedure ServiceSelection
initiates the three parts LocalSelection, GlobalSelection and Optimization (not shown). Analyze-
Node checks if the current solution is valid or initiates the Backtracking otherwise. Considering
the two procedures for checking statements, checkConst omits the evaluation of characteristics
using aggregation functions which cannot be evaluated on a subset. Therefore, checkFullConst
finally evaluates all requirements. DescentTree uses the heuristic approach to decide which path
has to be evaluated firstly.

5 Conclusion and Future Work

Complementing existing approaches on the specification of quality contraints and non-functional
aspects as well as on service selection, this paper presents an advanced description language to
specifiy NFCs in a way which supports the usage of strategies in order to descrease complexity as
well as a respective low-complex service selection algorithm. Both the description language and
the algorithm are currently implemented within a prototype of the DEMAC process execution
engine for mobile workflows (cp. [KZL06]) which was formerly using an insufficient key-value
approach to specify NFC offers and requirements. First tests have shown the applicability and ef-
fectiveness of the approach. Ongoing work includes research on further description mechanisms
which enable the integration of application-specific knowledge about the probable execution of
the process in order to estimate the control flow with respect to branches and cycles.

Acknowledgements: The research leading to these results has received funding from the Eu-
ropean Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (S-Cube).

11 / 12 Volume 37 (2011)



Towards NFC-Aware Process Execution for Dynamic Environments

Bibliography

[Aag01] J. O. Aagedal. Quality of Service Support in Development of Distributed Systems.
PhD thesis, University of Oslo, 2001.

[AP06] D. Ardagna, B. Pernici. Global and Local QoS Guarantee in Web Service Selection.
In Business Process Management Workshops. Pp. 32–46. Springer, 2006.

[BSR+06] R. Berbner, M. Spahn, N. Repp, O. Heckmann, R. Steinmetz. Heuristics for QoS-
aware Web Service Composition. In Int. Conf. on Web Services. Pp. 72 –82. 2006.

[DLS05] G. Dobson, R. Lock, I. Sommerville. QoSOnt: A QoS Ontology for Service-centric
Systems. In 31st EUROMICRO Conference on Software Engineering and Advanced
Applications. Pp. 80–87. 2005.

[HHGR06] G. Hackmann, M. Haitjema, C. D. Gill, G.-C. Roman. Sliver: A BPEL Workflow
Process Execution Engine for Mobile Devices. In Int. Conf. on Service-Oriented
Computing (ICSOC 2006). Pp. 503–508. Springer, 2006.

[JMG05] M. C. Jaeger, G. Mhl, S. Golze. QoS-Aware Composition of Web Services: An
Evaluation of Selection Algorithms. In On the Move to Meaningful Internet Systems
2005: CoopIS, DOA, and ODBASE. 2005.

[KZL06] C. P. Kunze, S. Zaplata, W. Lamersdorf. Mobile Process Description and Execution.
In Proc. of the 6th Int. Conf. on Distributed Applications and Interoperable Systems
(DAIS 2006). Pp. 32–47. Springer, 2006.

[LKD+03] H. Ludwig, A. Keller, A. Dan, R. P. King, R. Franck. Web Service Level Agreement
(WSLA) Language Specification. Technical report, IBM Corporation, 2003.

[PTDL08] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann. Service-Oriented Comput-
ing: a Research Roadmap. Int. J. Cooperative Inf. Syst. 17(2):223–255, 2008.

[RCJ02] N. Rosa, P. Cunha, G. Justo. ProcessNFL: A Language for Describing Non-
functional Properties. In 35th Annual Hawaii International Conference on System
Sciences (HICSS’02). Volume 9. IEEE Computer Society, 2002.

[SDM01] A. Sahai, A. Durante, V. Machiraju. Towards Automated SLA Management for Web
Services. Technical report, HP Laboratories, 2001.

[TPP02] V. Tosic, B. Pagurek, K. Patel. WSOL – A Language for the Formal Specification
of Various Constraints and Classes of Service for Web Services. Technical report,
Carleton University, Ottawa, Canada, 2002.

[VOH+06] A. S. Vedamuthu, D. Orchard, M. Hondo, T. Boubez, P. Yendluri. Web Services
Policy 1.5 – Primer. Technical report, W3C, 2006.

[YL05] T. Yu, K.-J. Lin. Service Selection Algorithms for Web Services with End-to-End
QoS Constraints. Inf Syst E-Bus Manage 3(2):103–126, 2005.

[YZL07] T. Yu, Y. Zhang, K.-J. Lin. Efficient algorithms for Web services selection with end-
to-end QoS constraints. ACM Trans. Web 1, May 2007.

Proc. WowKiVS 2011 12 / 12


	Introduction
	Background and Related Work
	Algorithms for Service Selection
	Languages for Describing Non-Functional Requirements

	Description of Non-Functional Requirements and Offers
	Dynamic Service Selection for NFC-Aware Processes
	Conclusion and Future Work

