Ad-hoc Management Capabilities for
Distributed Business Processes”

Sonja Zaplata, Dirk Bade, Kristof Hamann, Winfried Lamersdorf
Computer Science Department, University of Hamburg
{zaplata|bade|hamann|lamersdorf}@informatik.uni-hamburg.de

Daniel StraRenburg®, Benjamin Wunderlich?
'CoreMedia AG, Geoflags GmbH, Hamburg, Germany
!Daniel.Strassenburg@coremedia.com, 2b.wunderlich@geoflags.de

Abstract: Advanced business processes are mostly distributed and require highly
flexible management capabilities. In such scenarios, process parts often leave their
initiator’s direct sphere of influence — while management requires both monitoring
as well as instant reaction capabilities anytime during the overall execution of the
process. However, realizing such functions is often difficult, e.g. due to the hetero-
geneity and temporal disconnectivity of participating execution systems. There-
fore, this contribution proposes a two-tier concept for monitoring and controlling
distributed processes by representing a process management system as a managea-
ble resource according to the WSDM standard. Based on a minimal shared model
of management capabilities it allows to define customized events and processing
rules for influencing business processes executed on a remote (and even on a tem-
porarily disconnected) process management system. Applicability is demonstrated
by a scenario-based evaluation on distributed WS-BPEL and XPDL processes.

1 Motivation

Today’s competitive business collaborations highly benefit from transparency and visi-
bility of the status of their business process networks. Within a single organization, busi-
ness activity monitoring (BAM) technologies support real-time analytics about running
business transactions and allow for the correlation of events for causalities, aggregates,
thresholds, and alerts based on user-defined preferences. The analyzed information is
delivered in (near) real time and provides an important basis to detect failures and non-
compliances, to react to them accordingly and in sufficient time and, thus, to optimize
the execution of processes in whole or in part.

However, to stay competitive and provide new value-added products and services, often
also cross-organizational collaborations become necessary which span business
processes between several organizations and different process management systems.
Here, not only atomic resources such as employees, machines and services, but also the
execution of a process instance itself can be distributed. Figure 1 shows examples for

“The research leading to these results has received funding from the European Community’s Seventh Frame-
work Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

BPMS 1

Site B

(&) &

J

a) Subcontracting

ﬁﬁﬁﬁ

i i
H H
s
P @si
i SiteB JA

Site C @

b) Process fragmentation

—|—>

BPMS 1 BPMS 2 BPMS 3 BPMS 4 E [BPMS 2

o le l8llg ”

Sne B
Site A Site B Site C SiteD | 0000000 | Meeseseeeeens’ e —
. J \)

c) Process instance migration d) BPM-as-a-Service

B
j/'

Fig. 1: Examples for the distribution of process execution [vdA00,ZK+10]

such distribution, realized as subcontracting of single process parts, fragmentation of
processes, process instance migration from one workplace to another, and BPM-as-a-
Service where the execution of a business process is fully operated by an external pro-
vider [vdAOO, ZK+10]. Considering resulting cross-organizational processes, it is even
more relevant to gather information about the execution on the remote system, because
such participants may be dynamically selected or exchanged on the basis of their work-
load, context or QoS parameters. Cross-organizational monitoring and controlling capa-
bilities are thus important to support the controllability of active process parts and —
based on the collected information and experiences — optimize the distribution and ex-
ecution of upcoming processes.

As a current drawback, today’s BPM systems mostly consider monitoring and control-
ling of single centralized process executions, are often heterogeneous and do not provide
standardized runtime monitoring or management APIs [vL+08]. Therefore, an integra-
tion of runtime monitoring information from different source systems is hardly possible
yet. Required possibilities to also take influence on a remote process execution and to
react to the observed behavior of the process (preferably in real time) are still challeng-
ing. This paper therefore aims at a concept and supporting infrastructure to flexibly col-
lect information about the execution of process parts running on a remote system, to
automatically process this information and to predefine and execute timely reactions to
detected complex situations where ever necessary. Therefore, the rest of this paper is
organized as follows: Section 2 motivates the need for a cross-organizational manage-
ment approach for distributed business processes based on existing and related work.
Section 3 presents a two-tier middleware extension for process management systems in
order to support the provision and utilization of ad-hoc management capabilities. Section
4 analyzes applicability of the proposed concepts and Section 5 concludes the paper.

2 Background and Related Work

Research in the area of monitoring constitutes an important part of the management of
distributed processes. Relevant previous approaches use the idea of extending existing
process models by weaving in additional activities which call-back to a central monitor-
ing system (e.g. [BGGO04, BGO05]). Thereby, the user initiating the process can build up
his own monitoring system according to his individual preferences, e.g. accessing the
status of the process instances, the duration of activities or the actual navigation of con-
trol flow. Neither agreements nor the adaptation of the partner system are required. Nev-
ertheless, many information interesting for distribution, such as current system properties
(e.g. the location where the process is executed, or the current workload of the engine),
the number and type of deployed (but uninitiated) process models or the occurrence of
internal process instance events (e.g. errors) are not visible. Furthermore, inserting addi-
tional activities after each functional task may result in a huge monitoring overhead — in
the worst case expanding the original process description up to its double size, poten-
tially decreasing execution performance considerably and mixing business logic and
technical management logic in an undesired way [MWLO08]. If the monitoring system
becomes unavailable, the execution of the functional process is delayed or is likely to
fail. Furthermore, appropriate actions depending on the results of the gathered informa-
tion are limited, because running process activities cannot be influenced, e.g. cancelled,
as the remote system does not provide an interface for such operations.

In order to preserve efficiency of process execution while at the same time allow quick
and adequate reactions to predefined situations, the subscription to process-related
events and their corresponding processing are attached a high importance [vA09]. While
a primitive event simply represents some relevant change of a certain property (e.g.
change of a process’s status, a workload shift, etc.) complex events represent some arbi-
trarily complex inference of information from one or more primitive or other complex
events [Luc02]. This is achieved by so called Complex Event Processing (CEP) and
Event Stream Processing techniques. As an example, the ESPER project' addresses
business process management and automation, i.e. process monitoring, BAM, reporting
exceptions and operational intelligence. It uses an SQL-based query language to express
rules and provides a rule engine for complex event processing. In order to address the
heterogeneity of possible event sources, common agreements and standards for the rep-
resentation of events (e.g. IBM’s Common Base Event) as well as for the specification of
complex event inference statements are required. The specification of reactions to (com-
plex) events is equally important. Rule-based approaches, especially Event-Condition-
Action rules, are widely used but due to manifold application domains neither the event,
nor the condition or action representations are commonly agreed on. Wetzstein et al.
[WK+10] therefore present an approach to support monitoring in service choreographies
based on agreements about events to be shared with other partners and using complex
event processing to derive key performance indicators for the overall process execution.
However, this approach still only focuses on the subscription to events, but neither offers
the possibility for requesting monitoring information on demand nor for initiating ad-hoc
management actions.

! http://esper.codehaus.org/

As a foundation for the interoperability of heterogeneous workflow management sys-
tems, the Workflow Management Coalition (WfMC) has issued the Workflow Reference
Model which also contains administration and monitoring tools for the management of
users, resources and processes [WfM98]. An overview of management operations is
proposed here, especially for user and role management (e.g. changing privileges of
users), audit management (e.g. querying logs and audit trails), resource control (e.g.
concurrency levels, thresholds), process supervisory functions (e.g. termination of proc-
ess instances) and process status functions (e.g. fetching information about process in-
stances). Associated specifications for achieving workflow interoperability (e.g. Wf-
XML [SPGO04]) are more detailed, but still focus on sending, installing and retrieving
process definitions to/from a remote process engine. However, the idea of exchanging
process management related information based on a common model by using standard
web services is very interesting. The Web Services Distributed Management (WSDM)
standard develops this idea a bit further. It allows specifying an arbitrary resource (e.g. a
printer) as a so-called manageable resource which offers a set of resource-dependent
properties accessible by a self describing service interface [OAS06b]. Providing such
resource properties requires specifying a model as a mutual understanding of the re-
source to be managed. However, only a model supporting the management of web ser-
vices (MOWS) [OASO6a] themselves has been developed. The first part of the work
presented here therefore proposes a model to exchange basic information and control
options for business process management systems involved in cross-organizational col-
laborations. A similar basis has been proposed by van Lessen et al. [vL+08] for WS-
BPEL process instances. In this paper, however, we are extending this idea by also in-
cluding relevant process model and process engine properties as well as related events,
and, as the second part of this work, presenting a loosely coupled management compo-
nent in order to analyze and process the received information either on-site or remotely.

3 A Two-Tier Process Management Middleware

The approach presented here proposes a service-based common management interface
and uses complex event processing in order to specify user-defined management rules
and actions. Therefore, a business process management system is considered as a man-
ageable resource according to the understanding of WSDM. Defining the elements and
properties of this manageable resource, relevant functionalities such as data retrieval,
event subscription and control options are exposed as services and can be integrated in a
standard registry and thus in existing and future applications. Based on that, an addi-
tional component uses the resulting management services and events in order to specify
user-defined monitoring and management (re-)actions.

3.1 Tier 1: Process Management System as a Manageable Resource

In order to find an adequate basis for a common understanding of the elements and at-
tributes relevant for distributed process management, an analysis of several current prac-
tical and theoretical approaches and systems as well as abstract models and concrete
products for traditional and distributed business process management has been carried

management interface

meta services

events | ™

a information modification
I context change_l |
—————— Fo— e context
process model | |
[‘f ‘r
instantiate : |
|
T ;‘::;58 intrinsic extrinsic
| process instance -= '>| event I-l context context
terminate
4
process history
L process management system

Fig. 2: Process management system as manageable resource

out. The analysis has lead to the identification of most relevant management entities and
a resulting basic model which is shown in Figure 2. It holds the process management
system as a manageable resource which can be accessed by a service-based management
interface either by pulling read-only information about its entities (information inter-
face), by asking for manipulation of entity values (modification interface) or for receiv-
ing events emitted by the entities (event interface). To provide information about the
management itself, a meta interface allows to access information about capabilities and
operations for the configuration of the three aforementioned interfaces.

In the context of distributed process management, the proposed entities of a process
management system include the process models which are deployed to the process en-
gine, the process instances which are instantiations of these models (representing the
processes which are currently running), and the process histories which contain informa-
tion about processes which have already been finished (cp. Figure 2). Furthermore, to
consider the special characteristics of distributed process management (such as mobility,
cooperation and dynamic assignment) the process management system has a relevant
context comprised of the intrinsic context of the process engine (e.g. system properties
such as workload or service availability), and the extrinsic context (e.g. location or
weather). Both types of context can either be static (e.g. the identity of the system’s
owner) or dynamic (e.g. the current workload). Generic context models which can be
customized for such application are e.g. proposed by [KZTLO08].

Figures 3 and 4 show refinements of the entities process model and process instance as
manageable resources. Here, a process consists of activities which are connected by
transitions to define a control flow (potentially restricted by a condition), and a set of
data fields using a certain data type also defined within the process model. Furthermore,
participants can be predefined as required performers for specific activities which are
especially important in the context of distributed process management as this element
contributes to the selection of partner systems. A process instance (cp. Figure 4) extends
its process model by implementing the associated runtime information. Most impor-
tantly, this involves the status of the running process (e.g. executing, suspended, in er-
ror), the specific values of the data fields, the status of the activities (e.g. running,
skipped), the evaluation of transition conditions (true/false) and the actual performers
who are finally executing the activities. Finally, process histories reflect the entities of

1
1 1
* * * *
redefined 0.1 1 L 1
p | activity - status
performer
* 1 1 ©
—I from to * *
* * * data type ‘ ‘ transition ‘
use data type | | transition | ! !
* * % 0.1
1
% 0.1 T * T
data field 0.1

condition

evaluation result

*

1
data value

Fig.3: Process model as manageable resource Fig.4: Process instance as manageable resource

* use

the terminated process instances in a static way (not depicted). In order to enable a dis-
tributed execution and a respective management, all three entities need to have a unique
identifier for the correlation of requests.

According to existing approaches such as Wf-XML [SPGO04], all entities contain a num-
ber of sub entities and individual atomic properties, e.g. a process engine has a current
workload expressed as the number of running process instances and CPU load, or a
process instance activity has a start time, a duration and an end time. Creation of entity
instances and changes of their properties’ values are effecting the associated events. In
order to allow manageability, exchanging information about a resource property requires
a uniform and unambiguous representation and interpretation of values, e.g. represented
as standard or complex data types, and a metric. Furthermore, the modifiability (e.g. read
or read-write), the availability of the property (e.g. before, during or after execution of
the process or the activity) and the mutability and frequency of updates should be speci-
fied. Due to space limitations and similarity to existing meta models, the enumeration of
relevant entity properties and events should, however, not be part of this paper.

3.2 Tier 2: Management Component for Complex Event Processing

Providing informational and manipulative services and the possibility to subscribe to
events based on a common understanding such as established in Section 3.1, arbitrary
management applications can be composed in order to collect information and react to
even complex situations in a user-defined way. The general methodology to support such
operations is based on a loosely-coupled management component which is depicted in
Figure 5: The user who is initiating a controlled distributed execution of a process (in the
following called the customer) takes the original process description to be executed and
creates an additional document (management document) which holds the customer’s
requirements for the management of this process (management rules). Here, the term
management subsumes all objects, situations and operations which are, from the cus-
tomer’s perspective, relevant for the correct execution and administration of the distrib-
uted process and are not covered by the functional business process description. Rele-
vant objects are the entities of the model presented in Section 3.1, e.g. process models,
instances and data objects. Situations and operations are described within the manage-

| | service-based

operation ™ management
interface

e | initiation

management
document

management
U= rule engine component

event pattern tier 2

recognition
(CEP)

execution of
individual
management

events management rule actions
~
L
A
AN}

information

service-based
management
interface

meta services

| events || modification

context

tier 1

process
process instances process models management
system

Fig. 5: Management component to support customized management actions

ment document as complex situations and actions. An example for such a situation-
action pair is monitoring the duration of a specific activity (object) and, in case a speci-
fied amount of time has passed and no progress becomes visible (situation), to restart the
activity (action). However, also monitoring rules that do not influence the execution of
the process are possible (e.g. after each activity, its performer, duration and current loca-
tion should be logged) or distribution decisions can be supported (e.g. if the workload
exceeds a specified threshold, the process should be transferred to a process engine with
a better capacity).

Listing 1 shows the general syntax of a management rule as a part of the management
document. For administration purposes, each management rule has a name and, option-
ally, a description. The rule pattern holds an event pattern to determine if a complex
situation has occurred or not. The rule action specifies the service to be executed, includ-
ing parameters for the service call if necessary. Encapsulated as a composite service,
even complex actions can be defined. Furthermore, arbitrary system-external services,
such as sending an email, can be referenced.

MANAGEMENT-RULES
MANAGEMENT-RULE
NAME : <String>
[DESCRIPTION : <String>]
RULE-PATTERN : <Event-Pattern>
RULE-ACTION : <Service-Invocation>
END MANAGEMENT-RULE

©O~NOUAWN R

END MANAGEMENT-RULES
Listing 1: Structure of management rules

The management document is passed to the management component and the system
returns a management identifier as a reference to the management document. Thus, the
customer can adapt the management rules later if necessary. Interpretation and process-
ing of the management rules are executed by a rule engine (cp. Section 3.3). Relevant
events are subscribed and event notifications are passed to the rule engine in order to
perform the pattern matching. If a specified pattern is recognized, the rule engine initi-
ates the execution of the corresponding actions.

Besides the management rules (line 18 of Listing 2), the management document holds
additional information required for correlation, assignment and execution of processes
and rules. Therefore, general information (lines 3-7 of Listing 2) contains a management
endpoint as the unique identifier of the process management system to be supervised,
and a management mode which defines when the management should end. As manage-
ment starts with passing the management document (i.e. the rule engine starts listening
to the specified events) it can either terminate automatically when all process instances
are finished (management mode = “system”) or it can explicitly be terminated by the
customer (management mode =“user”). The latter is relevant if the management should
also observe the process engine as a candidate for further distributions, if process history
data is required later (i.e. for evaluation) or if the process model can be instantiated again
from the outside (which is e.g. the case for WS-BPEL processes which deploy their own
service interface for the initiation of new process instances). In case of an automatic
termination, the customer can optionally specify a notification endpoint. Termination of
the management plays an important role, because here all rule patterns have to be re-
moved from the rule engine, and the associated event subscriptions have to be cancelled.

1 MANAGEMENT-DOCUMENT

2

3 GENERAL-INFORMAT ION

4 MANAGEMENT-ENDPOINT : <URL>

5 MANAGEMENT-MODE : '“system"|"user"
6 [NOTIFICATION-ENDPOINT : <URL>]

7 END GENERAL-INFORMAT ION

8

9 INSTANT IAT ION- INFORMAT ION

10 PROCESS-MODEL-REFERENCE o <STRING>
11 LOCAL-INSTANCE-REFERENCE > <STRING>
12 [INSTANTIATION-TIME : <DATE>]

13 [INSTANTIATION-DELAY : <INTEGER>]
14 [INSTANTIAT ION-PARAMETERS]

15 [BLOCKING-EVENT-TYPES]

16 END INSTANTIATION-INFORMATION

17

18 MANAGEMENT-RULES

19
20 END MANAGEMENT-DOCUMENT

Listing 2: Structure of management document

The part of the instantiation information (cp. lines 9-16 in Listing 2) contains relevant
data about the process instances. It holds the reference to the associated process model
(process model reference) and a placeholder for the process instances (local instance
reference) which do not exist at the time of deployment, but which need to be referenced
within the rule patterns and actions for instance management. In case only one instance
is distributed the process can optionally be started immediately, at a specified point of
time or after a specified delay. In this case, also the parameters for process instantiation
have to be passed. Finally, the management document specifies which events should be

able to block the execution of a process instance (cp. line 15 in Listing 2). Such blocking
events are required to enable immediate reactions where the process engine must not
continue execution of the process. Blocking events are only relevant for the monitoring
of process instances and are thus also part of the instantiation information.

In order to allow customizing the location of decision-making, processing of events and
derivation of management reactions can take place on the remote system or at the cus-
tomer’s site. In the first case, the management document has to be transferred to the
remote system, all events are caught locally and management actions are carried out by
the partner system. Here, in general, management data does not have to be transferred
over the network and consequently, the delay resulting from management is minimized.
This option is well suited in case mobile participants are involved and network connec-
tion is temporarily unavailable. In the second case, all information and/or events are
transferred to the customer and management reactions are determined here. This is re-
quired if e.g. management decisions are confidential or need approval by a human opera-
tor. However, this strategy may decrease performance of process execution. Further-
more, the customer has to run and maintain the management component in order to make
decisions — which may not be desired e.g. in the case of BPM-as-a-Service scenarios (cp.
Figure 1(d)). An attractive alternative is, however, the combination of both strategies,
e.g. having general monitoring data collected and processed by the remote system and
calling-back to the customer only in case of infrequent severe problems.

3.3 Implementation

In order to use the WSDM framework, the model of relevant characteristics and relation-
ships of process management system, process models, instances and context has been
represented as a WSDM resource properties document which is specified in XML. Fur-
thermore, XML-Schema (XSD) is used to specify structure and data type of each prop-
erty. According to the meta-description established in Section 3.1, an example for the
representation of the property “WorkloadInfo” is depicted in Listing 3 and 4. The re-
source properties can be accessed using the WSDM web service operations GetResour-
ceProperty and UpdateResourceProperty as well as a set of additional operations, e.g.
for cancellation of process instances, which are altogether included in the associated web
service description (WSDL). The WSDL file also contains the location where the service
can be accessed, e.g. a URL. Finally, WS-Notification (WSN) topics for subscription of
events have been specified and included, and for each event it is specified whether it
should be allowed to block the process execution in order to enable a direct reaction.

<Property name="tns:WorkloadInfo" modifiability="read-only"
mutability="mutable" meta:mutfregq="meta:minutes'>
<meta:availability>meta:always</meta:availability>
</Property>

Listing 3: Example for the meta-description of a BPM resource property within WSDM

ENEAN NN

<xsd:complexType name="WorkloadInfo'>
<xsd:sequence>
<xsd:element name="Runninglnstances" type=''xsd:int'>
<xsd:element name="CPULoad" type=''xsd:float">
</xsd:sequence>
</xsd:complexType>

Listing 4: Example for the schema definition of a BPM resource property within WSDM

DU A WN P

,) Discovery

I/ \\
/ process management system AN [
/ N administration
! Resource information GetResourceProperty
Property modification| wspL, [
EPR

Dor;utr’welm events GetResourcePropertyResponse
(Woce) meta data

] !

WSDM

] e Sermt

operation

!
Esper query
language

\4

communication

e

Esper
Rule
Engine

\
\
\,

document store

\,
\,

Fig. 6: Prototype implementation using WSDM and Esper

The left side of Figure 6 shows an overview of the implementation with WSDM. In
order to interact with the manageable resource, the management consumer only requires
the Endpoint Reference (EPR) of the process management system, i.e. the information
from the WSDL file. After that, read-only or write requests as well as subscriptions for
events can be carried out by requesting a property of the resource properties document.
The requested resource respectively replies with a GetResourcePropertyResponse resp.
UpdateResourcePropertyResponse message in case of a successful operation or with an
exception in case of an error. In case the consumer wants to subscribe for an event, be-
sides the topic also the type of the event can be specified, i.e. if the event should block
the execution of the process or not.

On side of the management component (cp. right side of Figure 6), the management
document is interpreted and stored for the time of its validity. The coordination and
administration module is now responsible for the discovery of the specified management
endpoint, to subscribe for the required events and to manage time constraints and dead-
lines. The received event stream is processed and tested against the user-defined event
patterns. In the prototype implementation, the complex event processing is done by the
existing Esper rule engine (cp. Section 2). As Esper expects expressions in the SQL-
based Esper query language, the abstract event pattern part of the management rules (cp.
line 5 of Listing 1) is represented by the respective terms of this language. A simplified
example for a complete management rule is presented in Listing 5. In this case, the proc-
ess variable named deadline within all instances of the process model with id="1" is
updated if the execution of an activity with id=4 takes longer than 60 seconds.

1 <Rule name="ExtendDeadline'>

2 <Trigger>

3 SELECT * FROM PATTERN

4 [EVERY (el=ActivityStarted(activityld="4",modelld="1")

5 -> TIMER: INTERVAL(60 SEC)

6 -> NOT e2=ActivityFinished(activityld="4",modelld="1"))]

7 WHERE el.instanceld=e2. instanceld

8 </Trigger>

9 <Action>

10 <Service epr="http://example.com/bpms.wsdl* operation="UpdateResourceProperty'>
11 <Param type="PropertyName"><Value>DataField</Value></Param>

12 <Param type="ProcesslnstancelD"><Value>%{el. instanceld}</Value></Param>
13 <Param type="DataFieldName'><Value>deadline</Value></Param>

14 <Param type="‘DataValue'><Value>60</Value></Param>

15 </Service>

16 </Action>

17 <Trigger>

Listing 5: Example management rule with Esper event pattern and WSDM service invocation

4 Evaluation

So far, the prototype implementation has been applied to two existing process manage-
ment systems: first to the DEMAC [ZKL09] process engine which uses XPDL processes
and supports the runtime migration of process instances and, second, to the Sliver
[HH+06] process engine which uses a subset of WS-BPEL processes. The following
example scenario is used to show the main observations and results also in comparison
to two previous approaches.

4.1 Example Scenario

Figure 7 shows an example from the eErasmus eHigher Education (eEH) project [JL06],
which is an international exchange program of higher education institutes among EU
countries. In order to facilitate a uniform exchange of students joining this program, a
standardized process is proposed for participating universities. The simplified functional
process used here involves subcontracting the host university for approving the creden-
tials necessary for taking courses there, allowing to take courses and exams until a speci-
fied deadline and preparing the credentials achieved at the host university in order to
acknowledge them at the home university.

The distributed execution involves several management requirements which are expected
in advance, i.e. before execution of the process starts: (R;) The host university is paid a
certain amount of money for each student and for the associated administration effort.
Therefore, the duration of each activity executed by the host university has to be logged.
(R,) In order to handle potential errors in time, the home university wants to be sure that
the foreign university has received the sub-process and is able to execute it, and, (Rs) if
duration of an activity expected as critical (here preparation of credentials) exceeds the
average time for executing a task, (R4) the activity should be skipped in order to at least
allow the control flow of the process to return to the calling system. (Rs) As it sometimes
happens that the deadline for taking courses is adapted by the host university, e.g. be-
cause the student gets ill, the home university wants to know about such events in order
to avoid automatic removal from the home register of students. In addition, there are a
number of unexpected occurrences during the runtime of this rather long-running (i.e.
several months) process: First, a financial aid program asks about the status of the stu-
dent’s overall study (Rg). Second, the student has married and his/her name has to be
adapted (R;).

Home university
Preparation of Acknowledge- Unlock
credentials ment of further O
credentials courses

Select host
university

Host university

<x
r
Approval Courses and Preparation of
exams >x | credentials

Fig. 7: eErasmus example process

4.2 Comparison and Results

Figure 8 shows the realization of the monitored process instance with weaving of moni-
toring activities, event-based monitoring, and the ad-hoc management approach pro-
posed here. Results are summarized in Table 1. It shows that monitoring aspects which
are known in advance, such as measuring of the duration of predefined activities, the
start of instance execution and the observation of variable value modifications can be
realized by the design time insertion of respective monitoring activities (timer activities
and passing of variables values to the central monitoring service) and by the event-based
monitoring and the ad-hoc management approach (by subscription of the respective
events). The detection of abnormal activity duration can be realized by the ad-hoc man-
agement as a complex rule involving also additional information about previous process
instances executed on this system and calculating their average time of execution. This is
neither possible by a system which makes use of events only (the events of other process
instances have not been captured before) nor by activity weaving (histories of other
process instances are not visible in the monitored process instance). Skipping critical
activities is also a problem, because event-based monitoring does not offer control func-
tionalities at all, and activity weaving cannot skip crashed activities by weaving an “end
activity” because in this case control flow will not reach this activity.

[monitoring service]

{ status=1
} stoptimer(1)

status=3]

i status=2
stoptimer(2) }

I variables=.

Host i starttimer(2) starttimer(3) }
unlversny == ivarlahlesf variables=. i ...S..;.E_.:__.
slarmmev(l)] l stoptimer(3)
variables=..{
Courses and Preparanun of
exams credentials
a) Approach using activity weaving
event listener
(XX ! ! [
H i i i
Host [events
university ?
frmeeeeeee - VariableChanged
|
Activity ctivity Activity Activity Activity | A H
Started l {Finished Started Finished d<x Started { Finished {
— i
Approval Coursesand | ~ Preparation of
exams credentials
b) Approach using event-based monitoring only
; new rule (...) ? Variable Changed (d)
EEETE [management component]
i getHistories | 4 i
Host meta data " information ” events H modification]
university [e o

i variablename)=...
Variable §

|
Activity |

Started |

Changed i
Activity |
Started |

{Activity
i Finished

Activity
Finished

Activity
Started

d<x

E—
Courses and
exams

Approval

¢) Approach using ad-hoc management

Preparation of
credentials

Activity]
Finished}

skipActivity

Fig. 8: Different realizations of the scenario-based management requirements

Management requirement Ad-hoc management Event-based monitoring Activity weaving

(R,) Duration of activities + + +
(R,) Instance started + + +
(R;) Detect critical activity duration + 0 0
(Ry) Skip critical activity if necessary +

(Rs) Observe variable value + +
(Rs) Ad-hoc status retrieval + 0 (o]

(R;) Ad-hoc variable value modification +
Table 1: Applicability of management requirements during execution of the example process

Considering unexpected occurrences, the ad-hoc management shows its biggest advan-
tage: The status retrieval can be made by calling the process’s resource property process
status and interesting data values directly. Both activity weaving and event-based moni-
toring can provide this data only in case a monitoring activity is inserted after each func-
tional activity resp. all available events have been subscribed. Therefore, it is more or
less a coincidence if such requests can be fulfilled as they cannot be determined in ad-
vance and relevant properties have to be weaved/subscribed before runtime. The ad-hoc
variable modification is also not possible because of missing runtime modification op-
erations. However, even by using the ad-hoc management approach, the process man-
ager has to be careful not to violate the integrity of the process. Therefore, in case of the
modification of the student’s name, the process manager should abstain from calling the
modification interface directly, but better update the management document by inserting
a new rule — e.g. to wait until the current activity is finished (subscribe ActivityFinished
as a blocking event), perform the modification, and then resume execution.

Considering non-functional characteristics, it shows that desired separation between
business logic and management logic can be achieved by event-based and ad-hoc man-
agement approaches (as the original business process does not have to be changed), but
not by activity weaving (cp. Figure 8). Especially in the context of mobile process man-
agement, the approach of activity weaving furthermore proves to be very instable (i.e. if
the monitoring service is not available, the process execution is delayed or even fails).
For the event-based approach, no delays effected by the management are visible at all —
however no reactions are possible and thus events can be emitted in parallel to an ongo-
ing process execution without delay. Compared with both event-based and ad-hoc man-
agement approaches, activity weaving has, however, the advantage that no system modi-
fications, security mechanisms or agreements are necessary.

5 Conclusion

In today’s highly dynamic business networks customized monitoring and controlling
options for distributed business processes gain increasing importance. This paper ad-
vances existing approaches for the management of such processes by presenting a con-
cept to not only passively observe the behaviour of business processes running on a
remote process management system but also to enable quick automatic and spontaneous
reactions on the basis of a service-based management interface. Thereby, the presented
approach allows for increased flexibility during process execution and for the integration
of valuable functionalities of remote process management systems which have not been
exploited before. However, process managers have to be aware of their respective new

potential, e.g. by influencing process execution during runtime which may lead to unde-
sired side effects. Furthermore, the presented approach has to be secured so that both
provider as well as the consumer of distributed process management are protected in a
sufficient way. Therefore, the conceptualization and application of protective measures
and customizable security and privacy mechanisms are an important part of future work.

References

[BGO5]
[BGG04]
[Esp10]

[HH-+06]

[JL06]

[KZTLO8]

[Luc02]
[MWLO08]
[OAS06a]
[OAS06b]
[SPG04]
[VA09]

[VdAQ0]

[VL+08]

[WfM98]

[WK+10]

[ZKLO09]

[ZK+10]

Luciano Baresi and Sam Guinea. Towards Dynamic Monitoring of WS-BPEL Proc-
esses. In 3rd Int.Conf. on Service-Oriented Computing, pages 269-282, 2005.

Luciano Baresi, Carlo Ghezzi, Sam Guinea. Smart Monitors for Composed Services.
2nd Int. Conf. on Service-oriented Computing, pages 193-202, 2004.

EsperTech. Esper - Performance. http://docs.codehaus.org/display/ESPER/Esper+
performance, 2010.

Gregory Hackmann, Mart Haitjema, Christopher D. Gill, Gruia-Catalin Roman. Sliver:
A BPEL Workflow Process Execution Engine for Mobile Devices. 4th Int. Conf. on
Service-Oriented Computing, pages 503-508, 2006.

R. Vermer, Juliet Lodge. Case Study e Erasmus eHigher Education (eEH). Sixth
Framework Programme R4eGov, Deliverable WP3 D1-D4, 2006.

Christian P. Kunze, Sonja Zaplata, Mirwais Turjalei, Winfried Lamersdorf. Enabling
Context-based Cooperation: A Generic Context Model and Management System.
Business Information Systems (BIS 2008), pages 459-470, 2008.

David Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Professional, 2002.

Daniel Martin, Daniel Wutke, Frank Leymann. A Novel Approach to Decentralized
Workflow Enactment. Enterprise Distributed Object Computing, pages 127-136, 2008.
OASIS. Web Services Distributed Management: Management of Web Services
(WSDM-MOWS) 1.1. Standard Specification, 2006.

OASIS. Web Services Distributed Management: Management UsingWeb Services
(WSDM-MUWS) 1.1. Standard Specification, 2006.

Keith D. Swenson, Sameer Pradhan, Mike D. Gilger. Wf-XML 2.0 XML Based Proto-
col for Run-Time Integration of Process Engines. WfMC, 2004.

Rainer von Ammon. Event-Driven Business Process Management. Encyclopedia of
Database Systems, pages 1068-1071, 2009.

Wil van der Aalst. Loosely coupled interorganizational workflows: modeling and
analyzing workflows crossing organizational boundaries. Information and Manage-
ment, 37(2), 2000.

Tammo van Lessen, Frank Leymann, Ralph Mietzner, Jorg Nitzsche, Daniel Schlei-
cher. A Management Framework for WS-BPEL. European Conference on Web Ser-
vices (ECOWS 2008), pages 187-196, 2008.

WFMC. Workflow Management Coalition Audit Data Specification. WFMC-TC-1015,
Workflow Management Coalition, 1998.

Branimir Wetzstein, Dimka Karastoyanova, Oliver Kopp, Frank Leymann, Daniel
Zwink. Cross-Organizational Process Monitoring based on Service Choreographies.
25th ACM Symposium on Applied Computing (SAC 2010), pages 2485-2490, 2010.
Sonja Zaplata, Christian P. Kunze, Winfried Lamersdorf. Context-based Cooperation
in Mobile Business Environments: Managing the Distributed Execution of Mobile
Processes. Business and Information Systems Engineering, pages 301-314, 2009(4).
Sonja Zaplata, Kristian Kottke, Matthias Meiners, Winfried Lamersdorf. Towards
Runtime Migration of WS-BPEL Processes. 5th InternationalWorkshop on Engineer-
ing Service-Oriented Applications (WESOA’09).

