
Coordination in Multi-Agent Systems:
A Declarative Approach using Coordination Spaces

Ante Vilenica, Alexander Pokahr,
Lars Braubach, Winfried Lamersdorf

Distributed Systems and
Information Systems,

University of Hamburg
{vilenica}@informatik.uni-hamburg.de

Jan Sudeikat, Wolfgang Renz

Multimedia Systems Laboratory,
Hamburg University of

Applied Sciences
{sudeikat,wr}@informatik.haw-hamburg.de

Abstract

Coordination is an important aspect of
multi-agent systems (MAS). Although be-
ing decisive for many MAS applications, it
is rarely modelled and implemented explic-
itly. Instead, coordination is realized im-
plicitly and hard wired among other agent
functionalities. Therefore, this work aims at
providing an approach towards explicit co-
ordination in MAS in which developers can
focus more on what and not so much on how
to coordinate. More specifically, this paper
presents both a declarative approach to mod-
elling coordination in MAS and a reference
implementation for an agent framework. In
this implementation, so-called coordination
spaces that are part of the agent environ-
ment, process the declarative description of
the coordination and thus release the devel-
oper from programming coordination manu-
ally. Consequently, this approach to declara-
tive coordination offers benefits like reusabil-
ity and interoperability of coordination as-
pects of MAS as well as the possibility to
coordinate agents with heterogeneous archi-
tectures.

1 Introduction

Multi-agent systems (MAS) are a well known ap-
proach to model and implement complex distributed
systems and applications. Due to the naturally decen-
tralized architecture, this paradigm provides appro-
priate concepts for realizing systems that offer inher-
ently non-functional requirements such as scalability,
robustness and failure tolerance. However, in order to
ensure proper system functionality of MAS on a global
level the local activities of agents need to be coordi-
nated. Coordination is therefore one of the key aspects
of MAS and can be defined as the management of de-
pendencies [Malone and Crowston, 1994]. The basic
idea of the work presented in this paper is that all as-
pects related to this management should be handled
separately in MAS within a dedicated environment.
This environment encapsulates all concerns related to

coordination and enables an easy way to apply differ-
ent coordination strategies without the need to change
the agent functionality. Thus, in this paper an ap-
proach is proposed that advocates a clear separation
between application functionality (handled by agents)
and coordination (handled by the environment).

The concept of environments as part of MAS has
been widely recognized. Agent definitions point out
the occurrence of an environment where an agent is
situated [Wooldridge and Jennings, 1995]. Moreover,
researchers have argued to understand environments
as first-class entities besides agents in MAS [Weyns et
al., 2005; Keil and Goldin, 2006] and have therefore
pointed out the need for an explicit concept to han-
dle concerns apart from the core agent functionalities.
However, most agent development frameworks, such
as JADE or Jack do not explicitly provide approaches
for modelling environments as a separate entity within
MAS. Even more, existing agent infrastructures often
realize environment responsibilities implicitly [Viroli
et al., 2007]. Therefore, these approaches often inter-
twine coordination and functionality.

The work presented here proposes concepts to han-
dle coordination in MAS explicitly - while treating en-
vironments as first-class entities. Therefore, a model
is presented that enables a declarative description of
coordination entities and mechanisms in MAS. This
description can be automatically processed within the
environment and, therefore, relieves developers from
implementing the coordination functionality manu-
ally. Within this work, such dedicated environments
for coordination are called coordination spaces. A ben-
eficial consequence of this approach is that aspects re-
lated to coordination can be modularized and there-
fore exchanged easily as well.

This paper is structured as follows. The next Sec-
tion discusses related work; Section 3 describes the
concept of coordination spaces in general whereas Sec-
tion 4 presents the implementation into an existing
agent framework as well as a case study before Sec-
tion 5 concludes the paper.

2 Related Work

Coordination among agents is about managing their
activities. In general, the type of coordination can be
differentiated whether it is realized by direct or in-



direct interaction. Due to the specific focus in this
paper only approaches concerning indirect interaction
will be treated in the following. Indirect interac-
tion has proven to be suitable for coordination be-
cause it decouples the identity of the interaction ac-
tors (anonymity) as well as the time (asynchrony) and
space (locality) of interaction [Keil and Goldin, 2006].
In order to systematize the work the approaches have
been broadly classified into the categories of integrated
agent environments, generic environment infrastruc-
tures and specialized coordination frameworks.

Integrated agent environments consider environ-
ments as part of a MAS and intertwine both. Such an
approach is followed by most agent simulation toolkits
like NetLogo1 and SimSeSAm2. In many cases these
toolkits offer an explicit environment for agents, in
which they can interact indirectly by e.g. positioning
objects on specific locations. Additionally, often envi-
ronments also provide ready-to-use functionalities for
sensing the local environment or for initiating environ-
mental processes like diffusion. Such approaches foster
the use of agent coordination via the environment and
support it via prebuilt functionalities, but also restrict
developers to these possibilities and make coordina-
tion an explicit part of the agent code. Furthermore,
simulation toolkits do not offer a viable path for the
transition of coordination logic to real applications,
which is what we aim at.

In the area of generic environment infrastructures
especially artifacts need to be considered. According
to the A&A (agents and artifacts) metamodel [Ricci
et al., 2007] a MAS consists of agents and artifacts,
which represent elements of the environment that can
be used by agents. In order to support the indirect
coordination via artifacts specific coordination arti-
facts can be devised [Ricci et al., 2007]. Examples for
such coordination artifacts include blackboards, maps
or task schedulers. The artifact approach transfers
the responsibility for coordination to the environment,
which is similar to our approach. Nonetheless, it also
explicitly expects the agents to use the artifacts for
coordination. This means that coordination has to be
part of the functional system design of the agents. Co-
ordination spaces shall perform their activities invisi-
ble for the agents in order to understand coordination
as a separate concern of the application development
that is independent of the agent and environment de-
sign. Technically, artifacts could be used for the im-
plementation of a coordination layer, e.g. to facilitate
the usage in distributed systems.

Besides artifacts, also several specialized coordina-
tion approaches have been developed. Typically, these
approaches aim at supporting one selected coordi-
nation mechanism. Examples range from ant envi-
ronments like Anthill3, over field-based mechanisms
[Mamei and Zambonelli, 2005] to social norms used
e.g. in 2APL4. Often such frameworks can be used

1http://ccl.northwestern.edu/netlogo/
2http://www.simsesam.de/
3http://www.cs.unibo.it/projects/anthill
4http://www.cs.uu.nl/2apl

Agent

Coordination
Enactment

Input
Output

C
oo

rd
in

at
io

n
In

fo
rm

at
io

n

Coordination 
Model (ACBG)

Agent

Coord. 
Enactment

Coordination Medium

1
...

2
3

B:A:

Application 
Layer

Coordination
Layer

Application

Agent

Coord. 
Enactment

...

Figure 1: Coordination enactment architecture

not only in simulation but also as part of real appli-
cations. Nevertheless, their applicability is limited to
the intended mechanism area, so that they cannot be
considered as generic solution to a broad range of co-
ordination problems.

To summarize, all described approaches do not pro-
vide an integrated approach that offers a clear model
for different coordination mechanisms as well as an
infrastructure supporting multiple mechanisms. The
next sections will propose such an abstract model for
coordination which also consists of a framework that
is capable of executing theses models.

3 Purposeful Integration of
Coordination into MAS

This section first introduces an existing architecture to
integrate coordination into MAS. Then it shows how
this approach can be extended in order to provide an
integrated programming model for the integration of
coordination in MAS.

3.1 Architecture for the Integration of
Coordination

The software-technical utilization of coordination
mechanisms as reusable design elements is addressed
by a tailored programming model. This model pro-
vides a systemic modelling and configuration language
(MASDynamics) [Sudeikat and Renz, 2009a] as well
as a reference architecture [Sudeikat et al., 2009] that
enables the automated enactment of prescribed coor-
dination models. The architecture separates the ac-
tivities that are conceptually related to coordination
of system entities from the entity functionality. Co-
ordination models are treated as first class design ele-
ments that define application-independent patterns of
agent interdependencies. The systematic integration
of these patterns into application designs is discussed
in [Sudeikat and Renz, 2009b].

An architectural blueprint for the integration of de-
centralised coordination mechanisms in MAS has been
proposed in [Sudeikat et al., 2009]. Figure 1(A) il-
lustrates the conceptual layered structure. The ap-
plication functionality is realized as an agent-based
system within an application layer. Agents are part
of the application design and serve as providers of
distinct functionalities. The coordination of agent
(inter-)actions is addressed by an underlying coordi-
nation layer. This layer contains two building blocks.



Application Environment

Coordination Space

Medium A

Perceive 
Interface

Perceive Event 

Publish
Interface

Percept
Generator

Fire 
SpaceEvent

Perceive 
Event

ICoordinationMedium

Init Agent Listeners 
and Observe

Oberserve according 
to MASDynModel

Publish Event Publish Event 

Percept
Processor

Agent

Figure 2: Conceptual model of coordination spaces

First, they provide a set of coordination media that
provide direct or indirect coordination mechanisms.
Media serve as infrastructures that allow agents to
exchange application dependent information and con-
tained mechanisms control the dynamics of informa-
tion dissemination. Media are accessed by a generic
publish/subscribe interface that decouples the partic-
ipating agents. Secondly, the participating agents are
equipped with coordination endpoints (cf. figure 1(B))
that automate coordination-related activities. End-
points are able to observe and influence the agent ac-
tivities (1). Via coordination media, these elements
exchange information that is relevant for the coor-
dination of activities (coordination information, 2).
The local configuration of these activities, e.g. when
to publish activities and how to process perceptions,
are defined in a declarative, externalized coordination
model (3).

The architecture provides a reference model to sep-
arate the coordination logic from the application logic.
Coordination is declaratively prescribed to support
the share and reuse of coordination pattern. This
viewpoint is particularly inspired from the develop-
ment of self-organizing applications where recurring
coordination pattern are reused in differing applica-
tion designs. Following the enactment architecture,
the coordination is transparently enacted, i.e. the
agent models are not modified but the coordination
logic can be supplemented to an existing application
design.

3.2 Using Coordination Spaces
This section presents the approach of coordination
spaces that provide an integrated programming model
for the integration of coordination into MAS. The
aim of this concept is to support this integration
with well-known principles from software engineering
like reusability, interoperability and interchangeabil-
ity. Furthermore, developers are relieved from imple-
menting coordination manually since all aspects re-
lated to coordination can be described declaratively
and on an implementation independent level. Also,
coordination spaces offer a non-invasive approach, as

agent code does not have to be changed in order to
enable coordination.

The concept of coordination spaces has two impor-
tant characteristics: First, it is based on the architec-
ture and principles presented in Section 3.1. Secondly,
it uses environments as first-class entities within MAS
and therefore provides separate spaces within the envi-
ronment that are explicitly in charge of coordination.

Figure 2 depicts the approach of coordination
spaces. It shows that coordination spaces are dedi-
cated places within the MAS environment that han-
dle all aspects related to coordination. The space ob-
serves the agents via listeners and gets therefore a
notification when an event occurs inside the agent.
This event is published to the coordination medium
which is in charge of processing the event. Agents
are capable of receiving events via their percept gen-
erators and percept processors. Therefore, the task of
coordination spaces consists mainly of three sub-tasks:
observing agents, propagating events via the coordi-
nation medium and notifying agents about events. All
these aspects of a coordination space are declaratively
modelled and described within a separate configura-
tion file. At system runtime, the coordination space
initializes and performs the coordination according to
the properties in the description file.

First, the space initializes listeners at the participat-
ing agents. These listeners observe the behaviour of
the agent components, like its beliefs, goals, plans or
whatever component might be of interest for the coor-
dination. Whenever an observed element changes its
state, the space observer sends an event to the perceive
interface of the space, which again passes this event
to the currently running coordination medium. This
medium is in charge of processing and computing the
coordination. The configuration of the medium deter-
mines how events are propagated to other agents. Like
the listener and observer, the type and configuration
of the coordination media is specified in a description
file (cf. Figures 4 & 5). As the coordination medium
is processing incoming events, it also needs a possi-
bility to propagate the outcome of the processing to
the participating agents. In order to do this, it uses
the publish interface of the coordination space which
causes the firing of a space event. Different agent ar-
chitectures, e.g. that of the Belief-Desire-Intention-
Model (BDI) [Rao and Georgeff, 1995] or just that of
simple reactive agents, can define their own percept
generators that are capable of receiving space events.
Space generators notify the participating agents via
their percept processors about changes in the appli-
cation and these changes may affect the behaviour
of the agents in turn. Therefore, the architecture of
coordination spaces is inspired by the type of agent-
environment relationship introduced in [Russell and
Norvig, 2002].

Figure 2 also depicts that coordination spaces have
three important interfaces that ensure a convenient
exchange of coordination media as well as the inde-
pendence of a concrete agent architecture. On the
one hand, the ICoordinationMedium interface ensures
that all coordination media implement certain basic



methods and have a similar structure, which enables
an easy replacement. On the other hand, the pub-
lish and perceive interfaces of the coordination space
ensure that agents can propagate and receive coor-
dination information. In order to support a certain
agent architecture only one agent listener/observer as
well as one percept generator/processor have to be
implemented. These elements mediate between the
agent and aforementioned interfaces of the coordi-
nation space. Therefore, it is even possible to use
agents with heterogeneous architectures within the
same MAS application.

The described approach of coordination spaces is
guiding the process of managing the dependencies
among agents. Therefore, it focuses on the ques-
tion what to manage and not how. The developer
is relieved from the how aspects because this con-
cern is managed by the functions that are offered
by the coordination space. The approach is non-
invasive and does not require any changes at the
agent side. It is transparent and provides a clear
separation of concerns. There might also be more
than one coordination space within one application.
One space could be used to deal with spatial coor-
dination aspects, like the movement in a 2D-Space,
whereas another space might be in charge of or-
ganizational aspects, e.g. managing different agent
roles, groups, positions [Gouaich and Michel, 2005;
Weyns et al., 2005].

4 Using Coordination Spaces within
an Existing Agent Framework

This section will show the applicability of coordination
spaces in practice. Therefore, selected elements of the
coordination space are presented before they are then
integrated into an existing agent framework. There-
after, a case study is introduced that implements a
MAS using a coordination space.

4.1 Configuring a Coordination Space
Every coordination space consists of a number of
participating agents and at least one coordination
medium. As mentioned in Section 3, coordination can
be realized by direct or indirect interaction. There-
fore, it has to be specified for each coordination
medium which kind of interaction type is used. Since
direct and indirect interactions differ completely from
each other, a separate model is provided for each of
them. Figure 3 shows exemplarily the configuration
model for indirect, e.g. mediated, interaction. It con-
sists of three main elements: AgentConfiguration, El-
ementConfiguration and EnvironmentConfiguration.
The first element references the agent types that use
the medium. The second element is the most im-
portant one since it offers the possibility to configure
the behaviour of the elements that realize the indirect
interaction in detail. Predominantly, these elements
are some kind of marker like (digital) pheromones or
gradient fields [DeWolf and Holvoet, 2006]. Markers
are elements that can be produced, manipulated and
deleted by agents and the environment. In addition,

id : string
Mediated Medium Configuration

type : string
positioner : string

AgentConfiguration
1

0..*

type : string
isMarker : bool
strength : double
min_strength : double
max_strength : double

ElementConfiguration

ElementActivityConfiguration:Diffusion1

0..1

rate : double
factor : double
class : string

ElementActivityConfiguration
ElementActivityConfiguration:Replication

0..1
ElementActivityConfiguration:Propagation

ElementActivityConfiguration:Evaporation
0..1

0..1

range : double
filter : string

PerceptionConfiguration

0..1

model : string
EnvironmentConfiguration

0..1
1

rate : double
class : string

EnvironmentProcess

1

0..*

Indirect Interaction

1
1

1
1..*

Figure 3: Abstract model of indirect interaction

markers can be perceived by agents. Different types of
markers can be defined and used within one coordina-
tion medium in order to realize different coordination
aims. The model for markers allows to configure the
way markers diffuse, replicate, propagate and evapo-
rate. Each of these aspects can be simply specified
with a value for the rate and factor as well as with a
reference to a separate class if a customized implemen-
tation is needed. The third element (Environment-
Configuration) allows to customize and enhance the
functionality of the space further by adding references
to EnvironmentProcesses. These elements can manip-
ulate the whole space. For example, they can be used
to destroy all markers for which the strength falls be-
low a limit or they can be used to produce new ones.
Processes can be customized with a rate that specifies
their execution frequency.

The configuration model (cf. figure 3) for coordina-
tion spaces has been specified as an XML-Schema.5

4.2 Framework Integration
The coordination space model has been imple-
mented for the Jadex Agent Framework [Pokahr and
Braubach, 2009a]. Jadex uses an application descrip-
tor that defines a MAS in a declarative way [Pokahr
and Braubach, 2009b]. Figure 4 shows exemplarily
how such a file looks like. It focuses on only those
elements which are of interest to understand the ap-
proach. Therefore, two aspects have to be pointed out:
coordination spaces are recognized as first-class enti-
ties of MAS, and there can be multiple coordination
spaces. The latter argument shows that even within
coordination a separation of concerns can be applied
meaningfully. Thus, organizational aspects are de-
tached from spatial aspects and can be modelled inde-
pendently. If the software developer wants to change
the way spatial coordination is done, he does not have
to deal with organizational aspects. The listing also

5http://vsis-www.informatik.uni-
hamburg.de/projects/sodekovs/schemas



Example.application.xml

Spatial 
Coordination 

Concern

Organizational
Coordination 

Concern

Agent Definition 
File (ADF)

<Application>
<Spaces>
<CoordinationSpace Type="Indirect Interaction">
<MediatedMediumConfiguration Id="Pheromone 2D"/>   
</CoordinationSpace>
<CoordinationSpace Type="Organizational">
<Model Id="AGR-Model"/>   
</CoordinationSpace>
</Spaces>
<...>
<Perspectives Type="2D"/>
<Agenttypes>
<agenttype name="Ant" ref="/Ant.agent.xml" />
</Agenttypes>

</Application>

Figure 4: Instance of an application descriptor

AntForaging.application.xml
<Application>
<Spaces>
<CoordinationSpace Type=“Indirect Interaction“>
<AgentConfiguration type="Ant"/>   
<MediatedMediumConfiguration Id=“Pheromone 2D“>
<ElementConfiguration Type="Pheromone" isMarker="true" 

strength="10">
<ElementActivityConfiguration type="Propagation">

<rate>2</rate>
<factor>5</factor>

</ElementActivityConfiguration>
<ElementActivityConfiguration type="Evaporation">

<rate>1</rate>
<factor>2</factor>

</ElementActivityConfiguration>
</ElementConfiguration>

</MediatedMediumConfiguration>
<Options>
<Type>Tspace</Type>
<IP>192.168.10.1</IP>
<Port>25787</Port>
<Options/>

</CoordinationSpace>
</Spaces>
<...>
</Application>

Semantic Aspects

Optional:
Technical Aspects

Figure 5: Coordination space details

shows that agents are simply added to an application
by referencing their agent definition file.

In this way, the integration of coordination spaces
follows a declarative approach. Right now, the frame-
work is realised in a prototype implementation for in-
direct interaction. Developers can use this existing
implementation to speed up the development of their
application. On the other hand, they can easily add
new implementations for coordination spaces due to
clearly specified interfaces for spaces and coordination
media. It is also envisioned to provide a reference im-
plementation for direct interaction.

4.3 Case Study: Ant Foraging
Finally, a concrete case study has been implemented
to illustrate how, for example, an ant foraging [Mamei
and Zambonelli, 2005] scenario can be realised using
the concept of coordination spaces. It will also be
demonstrated how this approach can be used to enable
easy ways to optimize parameters of an application.

Ant foraging is one of the well researched examples
from the field of nature inspired decentralised coordi-
nation [Mamei et al., 2006]. In this example, ants
leave pheromones (markers) in the environment on
their way back to their nest, once they have found
food. Pheromones influence the decisions of other for-
agers, which path to follow. These decisions are made

stochastically and are based on the strength of the
perceived pheromones. Due to the simplicity of the
ant actions it is well-suited to study the applicability
and efficiency of coordination mechanisms, as develop-
ers can focus on tuning the coordination. In computer
science, the inspiration of ant foraging has been used
for network routing [Sim and Sun, 2002] or other al-
gorithm optimization [Dorigo et al., 1999].

This case study uses the reference medium imple-
mentation for indirect interaction. The medium is
based on TSpaces6 which is a implementation of a
tuple space [Gelernter, 1985] server offered by IBM.
Tuple spaces are an associative memory often used
in distributed computing and were first introduced
with the Linda coordination language. In this sce-
nario, it is used as the place where the pheromones
are dropped by the ants. The behaviour and life cy-
cle of pheromones is managed by the coordination
medium, e.g. the tuple space, and can be specified
within the coordination space. Figure 5 gives an ex-
ample: it shows how semantic aspects like evaporation
and propagation are specified. Furthermore, the devel-
oper can adjust technical aspects of the medium like
the IP or port number if needed. Especially the first
aspect shows the benefit of this approach. The devel-
oper is freed from changing code in order to change the
behaviour of the application. Such changes can even
be performed by non-programmers that have domain
knowledge and want to optimize a system.

The example of ant foraging may be used as a model
for a transport network. In order to optimize the sys-
tem, essential parameters have to be identified and set
first. For ant foraging e.g. evaporation and propaga-
tion are two important parameters. Running simu-
lation experiments based on the coordination space,
two things can be discovered: if the evaporation rate
of the pheromones is high and the propagation rate
is low, information about good paths disappears too
fast and, therefore, the efficiency of the ants in find-
ing optial paths decreases. If, on the other hand, the
evaporation rate is low and the propagation rate is
high, it happens that pheromones do not disappear
fast enough. In consequence, then almost all paths are
marked as being ”good one” and, again, the efficiency
of the ants decreases. The benefit of the concept of
coordination spaces in such a scenario is that, in order
to find an optimal configuration for the ant foraging,
only parameters within the description file have to be
changed whereas the program code itself can remain
the same. Further benefits are that the coordination
implementation (e.g. pheromone diffusion etc.) can
be reused in different application scenarios and also
that an ant-foraging-based transport network appli-
cation can easily be adopted to make use of another
ready-to-use coordination mechanism.

5 Conclusion and Future Work
One main concern of this paper was highlighting the
importance of coordination as a vital aspect of many
application areas. Nowadays, coordination is often

6http://www.almaden.ibm.com/cs/tspaces/Version3/



specified as part of the functional design of the tar-
get system. Thus, coordination becomes intertwined
with other system facets and cannot be easily adjusted
or exchanged. This paper argues that coordination
should be considered as a separate dimension and re-
alized as far as possible independently from the consi-
tuting parts promoting a clear separation of concerns.

As a possible solution an integrated approach, called
coordination spaces, for the issue of explicit coordina-
tion in MAS has been proposed. On the one hand it
consists of a well defined model of coordination prop-
erties, most importantly agents and coordination me-
dia that can be used to specify coordination in MAS
in a declarative way. On the other hand it consists of
a MAS infrastructure that is capable of automatically
processing this coordination specification. Coordina-
tion spaces offer a non-invasive and transparent way
of coordination in MAS, i.e. agent code does not have
to be changed, making it possible to coordinate agents
independently of their internal architectures. There-
fore, heterogeneous agents, e.g. BDI and task-based
agents, can be coordinated within the same MAS. Fur-
thermore, coordination mechanisms can be easily ex-
changed without impacting agent functionalities.

Future work will on the one hand strive towards pro-
viding more coordination media implementations aim-
ing at a catalog of reusable coordination patterns with
ready-to-use implementations. On the other hand, it
is investigated how to enable and manage the dynamic
selection of coordination media at system runtime.

Acknowledgments
We would like to thank the Deutsche Forschungs-
gemeinschaft (DFG) for supporting this work in a
project on ”Self-organisation based on decentralized
Co-ordination in Distributed Systems” (SodekoVS).

References
[DeWolf and Holvoet, 2006] T. DeWolf and

T. Holvoet. A catalogue of decentralised coordi-
nation mechanisms for designing self-organising
emergent applications. Technical Report CW 458,
Dept. of Comp. Science, K.U. Leuven, 8 2006.

[Dorigo et al., 1999] M. Dorigo, G. Di Caro, and
L. M. Gambardella. Ant algorithms for discrete op-
timization. Artif. Life, 5(2):137–172, 1999.

[Gelernter, 1985] D. Gelernter. Generative communi-
cation in linda. ACM Trans. Program. Lang. Syst.,
7(1):80–112, 1985.

[Gouaich and Michel, 2005] A. Gouaich and
F. Michel. Towards a unified view of the environ-
ment(s) within multi-agent systems. Informatica
(Slovenia), 29(4):423–432, 2005.

[Keil and Goldin, 2006] D. Keil and D. Goldin. In-
direct interaction in environments for multi-agent
systems. In Environments for Multi-Agent Systems
II, pages 68–87. Springer, 2006.

[Malone and Crowston, 1994] T. W. Malone and
K. Crowston. The interdisciplinary study of coor-
dination. ACM Comp. Surv., 26(1):87–119, 1994.

[Mamei and Zambonelli, 2005] M. Mamei and
F. Zambonelli. Field-Based Coordination for
Pervasive Multiagent Systems. Springer, 2005.

[Mamei et al., 2006] M. Mamei, R. Menezes,
R. Tolksdorf, and F. Zambonelli. Case stud-
ies for self-organization in computer science. J.
Syst. Archit., 52(8):443–460, 2006.

[Pokahr and Braubach, 2009a] A. Pokahr and
L. Braubach. From a research to an industrial-
strength agent platform: Jadex V2. In WI 2009,
pages 769–778. Oester. Comp. Gesell., 2 2009.

[Pokahr and Braubach, 2009b] A. Pokahr and
L. Braubach. The notions of application, spaces
and agents — new concepts for constructing agent
applications. In Multikonf. Wirtschaftsinf., 2009.

[Rao and Georgeff, 1995] A. Rao and M. Georgeff.
Bdi agents: From theory to practice. In Proc. of
the 1. Int. Conf. on Multiagent Syst., pages 312–
319. The MIT Press, 1995.

[Ricci et al., 2007] A. Ricci, M. Viroli, and
A. Omicini. The A&A programming model
and technology for developing agent environments
in MAS. In ProMAS 2007, pages 89–106. Springer,
2007.

[Russell and Norvig, 2002] S. Russell and P. Norvig.
Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2 edition, 2002.

[Sim and Sun, 2002] K.M. Sim and W.H. Sun. Mul-
tiple ant-colony optimization for network routing.
Int. Conf. on Cyberworlds, 0:0277, 2002.

[Sudeikat and Renz, 2009a] J. Sudeikat and W. Renz.
MASDynamics: Toward systemic modeling of de-
centralized agent coordination. In Kom. in Vert.
Syst., Informatik aktuell, pages 79–90, 2009.

[Sudeikat and Renz, 2009b] J. Sudeikat and W. Renz.
Programming adaptivity by complementing agent
function with agent coordination: A systemic pro-
gramming model and development methodology in-
tegration. Com. of SIWN, (7):91–102, 4 2009.

[Sudeikat et al., 2009] J. Sudeikat, L. Braubach,
A. Pokahr, W. Renz, and W. Lamersdorf. Sys-
tematically engineering selforganizing systems: The
sodekovs approach. Elect. Com. of the EASST, 3
2009.

[Viroli et al., 2007] M. Viroli, T. Holvoet, A. Ricci,
K. Schelfthout, and F. Zambonelli. Infrastruc-
tures for the environment of multiagent sys-
tems. Autonomous Agents and Multi-Agent Sys-
tems, 14(1):49–60, July 2007.

[Weyns et al., 2005] D. Weyns, M. Schumacher,
A Ricci, M. Viroli, and T. Holvoet. Environments
in multiagent systems. The Knowledge Engineering
Review, 20(02):127–141, 2005.

[Wooldridge and Jennings, 1995] M. Wooldridge and
N. Jennings. Intelligent agents: Theory and prac-
tice. The Knowl. Engin. Rev., 10(2):115–152, 1995.


