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Abstract— Collected data often contains uncertainties. Prob-
abilistic databases have been proposed to manage uncertain
data. To combine data from multiple autonomous probabilistic
databases, an integration of probabilistic data has to be per-
formed. Until now, however, data integration approaches have
focused on the integration of certain source data (relational or
XML). There is no work on the integration of uncertain source
data so far. In this paper, we present a first step towards a
concise consolidation of probabilistic data. We focus on duplicate
detection as a representative and essential step in an integration
process. We present techniques for identifying multiple proba-
bilistic representations of the same real-world entities.

I. INTRODUCTION

In a large number of application areas (e.g., astronomy [1]),
the demand for storing uncertain data grows increasingly from
year to year. As a consequence, in the last decades several
probabilistic data models have been proposed (e.g., [2], [3],
[4], [5]) and recently several probabilistic database prototypes
have been designed (e.g., [6], [7], [8]).

In current research on data integration, probabilistic data
models are only considered for handling uncertainty in an
integration of certain source data (e.g., relational [9], [10] or
XML [11]). Integration of uncertain (esp. probabilistic) source
data has not been considered so far. However, to consolidate
multiple probabilistic databases to a single one, for example
for unifying data produced by different space telescopes, an
integration of probabilistic source data is necessary.

In general, an integration process mainly consists of four
steps: (a) schema matching [12] and (b) schema mapping
[13] to overcome schema and data heterogeneity; (c) duplicate
detection [14] (also called entity resolution or record linkage)
and (d) data fusion [15] to reconcile data about the same real-
world entities. In this paper, we focus on duplicate detection
as a representative step in the data integration process and
show how to adapt existing techniques to probabilistic data.
For an extended version of this paper see [16], including first
considerations of search space reduction.

The paper is structured as follows. First we present related
work (Section II). In Section III, we examine current tech-
niques of duplicate detection. Then we introduce duplicate
detection for probabilistic databases in Section IV. Section V
concludes the paper and gives an outlook on future research.

II. RELATED WORK

In general, probability theory is already applied in methods
for duplicate detection (e.g., decision models), but current
approaches only consider certain relational ([17], [18], [19])
or XML data [20]. Probabilistic source data is not considered
in these works. On the other hand, many techniques that
focus on data preparation [21] and verification [22] as well
as fundamental concepts of decision model techniques [22]
can be adopted for duplicate detection in probabilistic data.
Furthermore, existing comparison functions [14] can be incor-
porated into techniques for comparing probabilistic values.

There are several approaches that explicitly handle and
produce probabilistic data in schema integration, duplicate
detection and data fusion. Handling the uncertainty in schema
integration requires probabilistic schema mappings [10], [23].
Van Keulen and De Keijzer ([5], [11]) use a semi-structured
probabilistic model to handle ambiguities arising during dedu-
plication in XML data. Tseng [9] already used probabilistic
values in order to resolve conflicts between two or more
certain relational values. None of the studies, however, allows
probabilistic data as source data.

III. FUNDAMENTALS OF DUPLICATE DETECTION

The data sets to be integrated may contain data on the same
real-world entities. Often it is even the purpose of integration:
to combine data on these entities. In order to integrate two or
more data sets in a meaningful way, it is necessary to iden-
tify representations belonging to the same real-world entity.
Therefore, duplicate detection is an important component in
an integration process. Due to deficiencies in data collection,
data modeling or data management, real-life data is often
incorrect and/or incomplete. This principally hinders duplicate
detection. Therefore, duplicate detection techniques have to be
designed for properly handling dissimilarities due to missing
data, typos, data obsolescence or misspellings.

In general, duplicate detection consists of five steps [22]:

A. Data Preparation

Data is standardized (e.g., unification of conventions and
units) and cleaned (eleminiation of easy to recognize errors)
to obtain a homogeneous representation of all source data [21].



B. Search Space Reduction

Since a comparison of all combinations of tuples is mostly
too inefficient, the search space is usually reduced using
heuristic methods (e.g., the sorted neighborhood method [22]).

C. Attribute Value Matching

Similarity of tuples is usually based on the similarity of
the corresponding attribute values. Despite data preparation,
syntactic as well as semantic irregularities remain. Thus, at-
tribute value similarity is quantified by syntactic (e.g., n-grams,
edit- or jaro distance [14]) and semantic (e.g., glossaries or
ontologies) means. From comparing two tuples, we obtain a
comparison vector ~c = [c1, . . . , cn], where ci represents the
similarity of the values from the ith attribute.1

D. Decision Model

The comparison vector is input to a decision model which
determines to which set a tuple pair (t1, t2) is assigned: match-
ing tuples (M ), unmatching tuples (U ) or possibly matching
tuples (P ). In the following, the decision’s result is stored in
the matching value η(t1, t2) ∈ {m, p, u}, where m represents
the case that (t1, t2) is assigned to M (resp. to P or U ).

The most common decision models are based on domain
knowledge or probability theory.

Knowledge-based techniques. In knowledge-based
approaches for duplicate detection [22], domain experts
define identification rules (see Figure 1). These rules specify
conditions when two tuples are considered duplicates with a
given confidence (certainty factor). Ultimately, if the resulting
certainty is greater than two thresholds seperating M , P and
U , the tuple pair is considered to be a duplicate.

IF name > threshold1 AND job > threshold2

THEN DUPLICATES with CERTAINTY=0.8

Fig. 1. Identification rule

Probabilistic techniques. In the theory of fellegri and sunter
([18], [22]), two conditional probabilities m(~c) (m-probability)
and u(~c) (u-probability) are defined for each tuple pair (t1, t2).

m(~c) = P (~c | (t1, t2) ∈M) (1)
u(~c) = P (~c | (t1, t2) ∈ U) (2)

Based on the matching weight R = m(~c)/u(~c) and the
thresholds Tµ and Tλ, the tuple pair (t1, t2) is considered to be
a match, if R > Tµ or a non-match, if R < Tλ. Otherwise, the
tuples are a possible match and clerical reviews are required.

In general, the decision whether a tuple pair (t1, t2) is a
match or not, can be decomposed into two steps (see Figure 2).
In the first step, a single similarity degree sim(t1, t2) is
determined by a combination function:

ϕ : [0, 1]n → R sim(t1, t2) = ϕ(~c) (3)

1If multiple comparison functions are used, we even obtain a matrix.
Without loss of generality, we restrict ourselves to a comparison vector.
Furthermore, we restrict on normalized comparison functions (⇒ ~c ∈ [0, 1]n).

The resulting degree is normalized, if a knowledge-based
technique is used (certainty factor) and non-normalized if
a probabilistic technique is applied (matching weight). In a
second step, based on sim(t1, t2) the tuple pair is assigned to
one of the sets M , P or U by using two thresholds.

Input: tuple pair (t1, t2), comparison vector (~c = [c1, . . . , cn])
1. Execution of the combination function ϕ(~c)
⇒ Result: sim(t1, t2)

2. Classification of (t1, t2) into {M,P,U} based on sim(t1, t2)

Output: Decision whether (t1, t2) is a duplicate or not

Fig. 2. General representation of existing decision models

E. Verification

The effectiveness of the applied identification is checked in
terms of recall, precision, false negative percentage and false
positive percentage [22]. If the effectiveness is not satisfactory,
duplicate detection is repeated with other, better suitable
thresholds or methods (e.g., other comparison functions).

IV. DUPLICATE DETECTION IN PROBABILISTIC DATA

Theoretically, a probabilistic database is defined as PDB =
(W,P ) where W = {I1, . . . , In} is the set of possible worlds
and P : W → (0, 1],

∑
I∈W P (I) = 1 is the probability

distribution over these worlds. Because the data of individual
worlds often considerably overlaps and it is sometimes even
impossible to store them separately (e.g., if |W | → ∞) a
succinct representation has to be used.

In probabilistic relational models, uncertainty is modeled
on two levels: (a) each tuple t is assigned with a probability
p(t) ∈ (0, 1] denoting the likelihood that t belongs to the
corresponding relation (tuple level), and (b) alternatives for
attribute values are given (attribute value level).

In earlier approaches, alternatives of different attribute val-
ues are considered to be independent (e.g., [2]). In these
models, each attribute value can be considered as a separate
random variable with its own probability distribution. Newer
models like Trio [6] or MayBMS [7] support dependencies by
introducing new concepts like Trio’s x-tuple and MayBMS’s
world set descriptor. For ease of presentation, we focus on
duplicate detection in probabilistic data models without de-
pendencies first, before considering x-tuples.

In general, tuple membership in a relation (uncertainty on
tuple level) results from the application context. For example,
a person can be stored in two different relations: one storing
adults, the other storing people having a job. If we assume that
the considered person is certainly 34 years old and jobless
with a confidence of 90%, then the probability that a tuple
t1 representing this person belongs to the first relation is
p(t1) = 1.0, but the probability that a corresponding tuple
t2 belongs to the second relation is only p(t2) = 0.1.
Note that both tuples represent the same person despite the
significant difference in probabilities. This illustrates that not
tuple membership but only uncertainty on attribute value level
should influence the duplicate detection process.



name job p(t)
t11 Tim {machinist: 0.7, mechanic: 0.2} 1.0
t12 {John: 0.5, Johan: 0.5} {baker: 0.7, confectioner: 0.3} 1.0
t13 {Tim: 0.7, Kim: 0.3} mechanic 0.8

Fig. 3. probabilistic Relation R1

A. Duplicate detection in models without dependencies

Consider the probabilistic relation R1 as shown in Figure 3.
The relation contains uncertainty on tuple level and attribute
value level. Note that the person represented by tuple t11 is
jobless with a probability of 10%. In the following, this notion
of non-existence is denoted by ⊥.

Since no dependencies exist, similarity can still be deter-
mined on an attribute-by-attribute basis. A non-existent value
is definitely not similar with any existing one. Thus, we define
sim(⊥,⊥) = 1 and sim(a,⊥) = sim(⊥, a) = 0 (a 6= ⊥).
Assuming error-free data, the similarity of two uncertain
attribute values a1 and a2 each defined in the domain D
(D̂ = {D ∪ ⊥}) can be defined as the probability that both
values are equal:

sim(a1, a2) = P (a1 = a2) =
∑
d∈D̂

P (a1 = d, a2 = d) (4)

In erroneous data, the similarity of domain elements has to be
additionally taken into account:

sim(a1, a2) =
∑
d1∈D̂

∑
d2∈D̂

P (a1=d1, a2=d2)·sim(d1, d2) (5)

For instance, the similarity of t11.name and t13.name
is either sim(Tim,Tim) = 1 (with probability 0.7) or
sim(Tim,Kim) = α (with probability 0.3), where α depends
on the chosen comparison function (e.g., α = 2/3 if the
normalized hamming distance is used).

Common decision models can be used without any adaption,
because uncertainty is handled on the attribute value level and
matching invariably results in a comparison vector ~c.

B. Duplicate detection in models with x-tuples

To model dependencies between attribute values, the con-
cept of x-tuples is introduced in the ULDB model of Trio
[6]. An x-tuple t consists of one or more alternative tuples
(t1, . . . , tn) which are mutually exclusive. The ULDB model
does not support an infinite number of alternatives (e.g.,
uncertainty in a continuous domain). In these cases, and to
avoid high numbers of alternatives, a probability distribution
can sometimes still be associated with the attribute value. For
example the value ’mu*’ (see t221.job) represents a uniform
distribution over all possible jobs starting with the characters
’mu’ (e.g., musician). Maybe x-tuples (tuples for which non-
existence is possible, i.e., for which the probability sum of the
alternatives is smaller than 1) are indicated by ‘?’. Relations
containing one or more x-tuples are called x-relations. In the
following, we consider a consolidation of the two x-relations
R2 and R3 of Figure 4.

Principally, we consider the similarity of two x-tuples t1 =
{t11, . . . , tk1} and t2 = {t12, . . . , tl2} as the expected similarity

name job p(t)

t21
John pilot 0.7
Johan mu* 0.3

t22

Tim mechanic 0.3
?Jim mechanic 0.2

Jim baker 0.4

name job p(t)

t31
John pilot 0.8
Johan pianist 0.2

t32 Tom mechanic 0.8 ?

t33
John ⊥ 0.2 ?
Sean pilot 0.6

Fig. 4. X-relations R2 (left) and R3 (right)

of their alternative tuples. Therefore, in the attribute value
matching step, the attribute values of all alternative tuples of t1
and all alternatives tuples of t2 are pairwise compared. Since
individual attribute values (e.g., t221.job) can be uncertain,
we use the formulas of Section IV-A. In this way, instead
one single vector ~c, k × l comparison vectors are obtained.
Therefore, decision models for assigning the pair (t1, t2) to
one of the sets M , P or U need to be adapted.

We define two approaches (see Figure 5). For each ap-
proach, the input consists of the considered x-tuple pair (t1, t2)
and a comparison matrix containing the comparison vector
of each alternative tuple pair (ti1, t

j
2). In the first approach

(Figure 5, left side), the similarity of the x-tuples is based
on the similarity of their alternative tuples (ϑ : Rk×l → R). In
the second approach (Figure 5, right side), it is derived from
their matching results (ϑ : {m, p, u}k×l → R).

In more detail, the first, more intuitive approach is based
on the similarity vector ~s(t1, t2) containing the similarity
of each alternative tuple pair (ti1, t

j
2) which is determined

by ϕ(~cij) (Step 1). The final similarity sim(t1, t2) results
from a derivation function ϑ(~s(t1, t2)) (Step 2). Ultimately,
the x-tuple pair is classified into {M,U} or {M,P,U} by
comparing sim(t1, t2) with one or two thresholds (Step 3).

One adequate derivation is to calculate the expected
value of the alternative tuple similarities (ϑ(~s(t1, t2)) =
E(sim(ti1, t

j
2))). Since tuple membership is not relevant for

duplicate detection, the probability of each alternative tuple ti

has to be normalized w.r.t. the probability of the corresponding
x-tuple (p(ti)/p(t)), where p(t) =

∑
j∈[1,n] p(t

j). As a
consequence, E(sim(ti1, t

j
2)) and hence the similarity of the

two x-tuples t1 and t2 are defined as:

sim(t1, t2) =
∑
i∈[1,k]

∑
j∈[1,l]

p(ti1)
p(t1)

· p(t
j
2)

p(t2)
· sim(ti1, t

j
2) (6)

Note that equations 5 and 6 are equivalent to the expected
value of the corresponding similarity over all possible worlds.

Unfortunately, if the values resulting from Step 1 are not
normalized, the expected value E(sim(ti1, t

j
2)) can become

unrepresentative. For example, if the two alternative tuples
ti1 and tj2 are similar to a large extent (ϕ(~cij) → ∞),
the similarity sim(t1, t2) becomes infinite, too, independent
from the probability of these alternatives. As a consequence,
this approach is more fitting for knowledge-based than for
probabilistic techniques.

In the second approach, after calculating the similarity
of all alternative tuple pairs (Step 1.1), each of these pairs
is classified into {M,P,U} (Step 1.2). From the resulting
matching vector ~η = {m, p, u}k×l, the similarity of the



Input: x-tuple pair (t1 = {t11, . . . , tk1}, t2 = {t12, . . . , tl2})
comparison matrix (~c(t1, t2) = [~c11, . . . ,~ckl])

1. For ~cij of each pair of alternative tuples (ti1, t
j
2)

1.1 Execution of the combination function ϕ(~cij)

⇒ Result: sim(ti1, t
j
2)

⇒ Result: ~s(t1, t2) = [sim(t11, t
1
2), . . . , sim(tk1 , t

l
2)] ∈ Rk×l

2. Execution of the derivation function ϑ(~s(t1, t2))
⇒ Result: sim(t1, t2)

3. Classification of (t1, t2) into {M,P,U} based on sim(t1, t2)

Output: Decision whether (t1, t2) is a duplicate or not

Input: x-tuple pair (t1 = {t11, . . . , tk1}, t2 = {t12, . . . , tl2})
comparison matrix (~c(t1, t2) = [~c11, . . . ,~ckl])

1. For ~cij of each pair of alternative tuples (ti1, t
j
2)

1.1 Execution of the combination function ϕ(~cij)

⇒ Result: sim(ti1, t
j
2)

1.2 Classification of (ti1, t
j
2) into {M,P,U} based on sim(ti1, t

j
2)

⇒ Result: matching value η(ti1, t
j
2) ∈ {m, p, u}

⇒ Result: ~η(t1, t2) = [η(t11, t
1
2), . . . , η(t

k
1 , t

l
2)] ∈ {m, p, u}k×l

2. Execution of the derivation function ϑ(~η(t1, t2))
⇒ Result: sim(t1, t2)

3. Classification of (t1, t2) into {M,P,U} based on sim(t1, t2)

Output: Decision whether (t1, t2) is a duplicate or not

Fig. 5. General representations of decision models adapted to the x-tuple concept: approach 1 (left) and approach 2 (right)

corresponding x-tuples is derived (Step 2) and the tuple pair
is assigned to one of the three sets M , P and U (Step 3).

The derivation function ϑ of Step 2 can be based on
probability theory, e.g., by defining the tuple similarity as a
kind of matching weight: sim(t1, t2) = P (m)/P (u), where
the two probabilities P (m) and P (u) are defined as:

P (m) =
∑

(ti1,t
j
2)∈M

p(ti1) · p(t
j
2) P (u) =

∑
(ti1,t

j
2)∈U

p(ti1) · p(t
j
2)

Since in this approach the similarity of two x-tuples is based
on values defined in the discrete domain {m, p, u}, the x-tuple
similarity is more imprecise than in the first approach. In
contrast, in spite of unnormalized results of Step 1, cases of
total unrepresentative similarity values can be avoided.

In summary, the first approach is more suitable for
knowledge-based techniques (for example by calculating the
expected certainty in Step 2) and the second one is more
adequate for probabilistic techniques.

V. CONCLUSION

Since many applications naturally produce uncertain data,
probabilistic databases have become a topic of interest in the
database community in recent years. In order to combine the
data from different probabilistic data sources, an integration
process has to be applied. However, an integration of uncertain
(esp. probabilistic) source data has not been considered so far
and hence is still an unexplored area of research.

In order to obtain concise integration results, duplicate
detection is an essential activity. In this paper, we investigate
how duplicates can be detected in probabilistic data.

We consider probabilistic data models representing uncer-
tainty on tuple and attribute value level with and without using
the x-tuple concept. We introduce methods for attribute value
matching and decision models for both types of models.

In conclusion, this paper gives first insights in the large area
of identifying duplicates in probabilistic databases. Individual
subareas, e.g., search space reduction or detecting duplicates
in complex probabilistic data, have to be examined in future
reflections. Furthermore, for realizing an integration of prob-
abilistic data: schema matching, schema mapping and data
fusion have to be considered w.r.t. probabilistic source data.
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