
Towards Mobile Process as a Service

Sonja Zaplata
Distributed Systems and Information Systems

University of Hamburg
Vogt-Kölln-Strasse 30

22527 Hamburg, Germany
zaplata@informatik.uni-hamburg.de

Winfried Lamersdorf
Distributed Systems and Information Systems

University of Hamburg
Vogt-Kölln-Strasse 30

22527 Hamburg, Germany
lamersdorf@informatik.uni-hamburg.de

ABSTRACT
Process as a Service (PaaS) addresses modeling, execution
and management of business processes without running ex-
tensive and costly process management software. Such a
flexible outsourcing strategy is especially advantageous in
the context of mobile devices and services which are increas-
ingly relevant for contemporary business activities. Based
on the concept of context-based cooperation, this paper pro-
poses a PaaS solution for mobile participants which enables
them to share existing local and remote resources and to
utilize PaaS functionality of cooperating providers in a user-
defined way. The approach is realized and evaluated by an
extended prototype implementation of the DEMAC (Dis-
tributed Environment for Mobility Aware Computing) plat-
form.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

Keywords
Mobile Business Process Management, Cloud Computing,
Process as a Service, Mobile Computing

1. INTRODUCTION
The acquisition and operation of specialized process man-

agement software including a process engine to automati-
cally execute business processes typically implies high ex-
penses and efforts. Associated costs (e.g. for software li-
censes, maintenance, support and training of employees)
only pay off if many complex processes have to be man-
aged in short time. However, for the execution of few, non-
recurrent, or ad-hoc processes the purchase of a complete
business process management solution is often uneconomi-
cal. As an alternative, process automation can be realized on
the basis of the Software as a Service (SaaS) paradigm [14].
In the case of process management, the software (i.e. the
process engine) is operated by an external service provider

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

and utilized by several customers in order to reduce capital
investments and running costs. Therefore, process initiators
only hold few domain-specific process templates which can
be adapted to special purposes and are then passed to the
service provider to be executed. As this strategy can be
used to outsource several aspects of process management,
the provision of such functionalities is often referred to as
Business Process Management as a Service or short Process
as a Service (PaaS) [4].

In order to integrate field staff or valuable context-aware
mobile applications, also the need for and the emergence
of mobile process management systems increases (e.g. [6,
11, 13, 5]). For example, mobile users or applications of-
ten require to initiate (ad hoc) business processes from their
current location, e.g. by taking an urgent order at the cus-
tomer’s site, or to access specific mobile components such as
sensors, RFID readers, GPS devices or cameras which often
cannot be integrated by traditional stationary process man-
agement systems. However, similar to the aspects discussed
above, the individual acquisition and operation of process
management systems for mobile devices are often unfavor-
able - especially as the initiation and execution of processes
is often unfrequent and mobile process management systems
are usually not operated at full capacity. Thus, the usage of
PaaS or sharing of existing (private) process engines is again
an attractive alternative.

The contribution of this paper is thus to propose a dis-
tributed PaaS approach which fits the decentralized nature
of mobile systems by integrating the capabilities of (private)
mobile resource providers and allowing them to form a dy-
namic alliance for each upcoming business process. However,
the delegation of (mobile) process execution to a distributed
mobile PaaS system has advanced requirements regarding
traceability, controllability, process privacy and accounting.
The approach presented here is based on the existing con-
cept of context-based cooperation which is introduced in the
following section. Section 3 presents the developed enhance-
ments in order to use context-based cooperation as a ba-
sis to build a distributed mobile PaaS system. Section 4
presents experiences gained with the prototypical implemen-
tation and Section 5 distinguishes the achieved results from
related work. The paper concludes with a short summary
and outlook.

2. BACKGROUND
Most small and medium-sized mobile devices such as sen-

sors or cell phones are not capable to host a complex business
process management system, because they are restricted in

Process

execution

Mobile Process Status:

www

Effects,

Results

BPMS M-BPMSInitiator

Mobile Process Status:Mobile Process Status:Mobile Process Status:

M-BPMS

Figure 1: Context-based cooperation (cp. [10])

computing power and memory, are often temporarily with-
out network connection and cannot access complex server
applications due to technological constraints. Furthermore,
mobile applications and devices are often designed for a spe-
cial purpose and are thus very heterogeneous [12], and mo-
bile resources are often decentralized and can only be ac-
cessed by using local networks (e.g. a sensor network). As a
consequence, also more powerful mobile devices often do not
have the capability of executing an entire business process,
but are potentially able to contribute with the execution of
a particular subset (i.e. an activity or a subprocess) [10].

The concept of context-based cooperation represents an ap-
proach to support the execution of such complex application
tasks by using context knowledge in order to integrate the
capabilities of different mobile nodes of the vicinity. The
following subsections introduce the existing concepts, show
a respective use case scenario and identify further require-
ments.

2.1 Context-based Cooperation
The concept of context-based cooperation focuses on the

delegation of so-called mobile processes to enable the co-
operative execution of a given structured task in a mobile
environment. A mobile process is defined as a piece of mo-
bile code representing a goal-oriented composition of services
which can be migrated to other (mobile or stationary) de-
vices in order to share the functionality provided by these
nodes [10]. Figure 1 shows a process initiator who is himself
not capable of executing an ad-hoc process requiring several
mobile and stationary services. Depending on the process’s
tasks and its technological requirements it has to involve
other process engines in order to execute the process’s activ-
ities, e.g. to access local functionalities of a sensor network
and mobile users as well as stationary web services and desk-
top users. The opportunistic strategy involves three stages:
As long as an activity can be executed locally by an ap-
plication running on the same (mobile) device, the device
is responsible for its execution. If such local applications
are unavailable, the device can search for adequate services
provided by other devices in its vicinity to execute the task
remotely. In case the direct vicinity does not provide the
required service, the process description can be migrated to
another remote device in order to enable the execution in a
different vicinity. It was shown that this strategy of process
migration increases the probability that an (ad-hoc) process
can be executed successfully [10] – especially in mobile en-
vironments where resources are often locally unavailable.

2.2 Use Case Scenario
As an example, Figure 2 shows a BPMN diagram of a

business case extracted from a trading company. Purchas-
ing agents of the trading company are often visiting fairs
and exhibitions. As local exhibitors sometimes offer special
prices, it is favorable to buy products directly on the spot.
However, to ensure a good deal, it is necessary to compare
the current market price of each item (e.g. by checking prices
of competitors). If the purchase of an item is considered to
be economical, it is added to the list of proposed items which
must be confirmed by the chief purchase officer. Depending
on his agreement, the local purchasing agent can make the
deal.

Especially if the number of selected products is high, a
semi-automatic and computer-supported execution of the
depicted steps is advantageous. Using an executable rep-
resentation of this business process (e.g. in WS-BPEL or
XPDL format), the mobile purchasing agent involves suit-
able mobile devices (e.g. a barcode scanner or RFID reader)
in order to collect the required data (e.g. product identifi-
cation codes). Market prices are looked up and compared
using web services available over the Internet. To be reach-
able everywhere and anytime, the chief purchase officer uses
two proprietary applications running on his notebook in or-
der to view proposed items and confirm their purchase.

However, installing and maintaining an individual special-
ized mobile process management system for each purchasing
agent is very unprofitable. Furthermore, due to the (local)
distribution and heterogeneity of involved services and ap-
plications, the usage of one single centralized process man-
agement system is also often not applicable (e.g. the barcode
scanner is not connected to the Internet). The unnecessary
repeated transfer of process data (e.g. as required for the
second, third and fourth activity) using mobile communi-
cation networks should also be avoided. In this case, the
migration of the entire process is also more efficient as the
repeated invocation of a remote service. Thus, the flexi-
ble utilization and combination of available mobile and sta-
tionary process management systems and respective local
services is advantageous for the execution of such business
tasks.

The ad-hoc initiation of such processes in a mobile envi-
ronment however requires a critical mass of service providers
which are willing to share their resources (i.e. process en-
gines and applications) and allow the execution of external
processes. In the use case, several local exhibitors are run-
ning simple mobile process execution engines in order to ac-
cept and initiate orders which are placed by the visitors of

1. Collect item

identification

codes

P
u

rc
h

a
s
in

g
 A

g
e

n
t

5. Purchase

selected items

C
h
ie

f
P

u
rc

h
a
s
in

g

O
ff

ic
e

r

2. Compare

prices of

competitors

For each item:

For each item:

3. View

proposed

item

4. Confirm

purchase

Figure 2: Business process of the example scenario

the fair. If a process engine is not utilized to full capacity, its
resources can be shared - which has the advantage to reduce
capital investment and running costs such as maintenance
by an additional source of revenue, e.g. on a pay-per-use
basis.

Due to the weak reliability assumed for distributed mo-
bile systems, also the acceptance of the process initiator to
submit his process to a (mostly transparent and unsecure)
mobile cloud environment has to be strengthened. The next
subsection summarizes this observations and identifies the
most important requirements regarding the provider as well
as the consumer side of such cooperations.

2.3 Requirements
By encapsulating the existing middleware platform for the

execution of mobile processes and exposing its functionality
of cooperative process execution “as a service”, the concept
of context-based cooperation forms a potential basis for a
distributed mobile PaaS system. Nevertheless, sharing ex-
isting mobile resources has to be advantageous for both PaaS
consumers and private operators of mobile process engines
and gain sufficient acceptance from both sides. Furthermore,
inherent characteristics of mobility have to be considered,
leading to the following requirements:

• R1 : The required solution must be able to ad hoc share
and integrate resources which are potentially (tem-
porarily) disconnected.

• R2 : There must be a higher level architecture to at-
tract and recruit a sufficient number of external actors,
e.g. by providing incentives, and to include them in an
overall payment and accounting model.

• R3 : As the control flow of a distributed process leaves
the client’s direct sphere of influence, the process must
be protected against unauthorized access.

• R4 : Due to unreliability of mobile environments, there
is an increased need for traceability and controllability
of the process execution.

• R5 : The individual interests of the mobile PaaS con-
sumer must be respected - even if he is temporarily
not available. Thus the process initiator has to make
a detailed description on how the process has to be ex-
ecuted, i.e. to proactively influence where the process
is executed.

• R6 : Due to mobility and decentralization, central nav-
igation nodes and runtime administration authorities
should be avoided.

• R7 : Limited resources of mobile devices require cus-
tomized strategies for service invocations at runtime
using context knowledge and preferably information
about non-functional aspects such as service availabil-
ity and load.

• R8 : New services and service providers may enter or
leave the system at any time and devices which will
actually contribute in the execution of a process may
not be known in advance [9]. The PaaS functionality
should thus be discovered and picked dynamically, e.g.
depending on the current context.

The following section makes a proposal for a further de-
velopment of context-based cooperation for the application
in mobile PaaS environments with a special focus on the
aforementioned aspects.

3. MOBILE PROCESS AS A SERVICE
A distributed Mobile PaaS (MPaaS) system should allow

to integrate (commercial or private) mobile and stationary
resources offering the functionality to execute a subpart of a
given process at their respective site. The concept presented
here uses peer-to-peer process execution based on runtime
process migration as presented in Section 2.1. An MPaaS
provider is thus defined as a mobile or stationary device
(potentially belonging to an external party) which runs pro-
cess management software that can be utilized by MPaaS
consumers in order to execute their business processes.

The resulting distributed MPaaS system architecture con-
sists of a (traditional) public PaaS provider responsible for
administration and accounting, a number of autonomous
private providers which are able to execute a process in a
cooperative and decentralized way, and a number of poten-
tial consumers which are interested to consume MPaaS func-
tionality. Note that these roles can change flexibly, e.g. an
MPaaS provider can also act as a consumer in case it uses
MPaaS functionality of other systems to execute his own
processes. Furthermore, the public PaaS provider can also
act as a (stationary) MPaaS provider by executing processes
with the “normal” PaaS functionality.

Figure 3 gives an overview of the overall concept. It is
comprised of three phases: Phase 1 can be understood as a
preparation phase in order to organize administration and to
create an account for each participant. Besides consumers,
also private providers which are interested in sharing their
process engines and respective resources can register at the
public PaaS provider (phase 1a) to be refunded later. This
does not necessarily need a stable network connection, but
can alternatively be realized offline, e.g. by a one-time hu-
man interaction. Also at this time, public keys and identities
of participating parties can be exchanged if necessary (cp.
Section 3.3).

Depending on the capabilities and the performance of the
participating devices, three kinds of MPaaS participants can
be distinguished:

• Full participants provide business process management
functionality, i.e. participate in the execution of the
process. This role is, in general, applicable for more
powerful mobile devices and stationary systems.

• Back-up participants are used to monitor the execution
of a process executed by a full participant. Therefore,
back-up participants need basic management capabil-
ities, such as receiving heartbeats, checkpoints and
events sent by the monitored participant.

• Proxy participants act as simple carriers of a process
description, i.e handing-over the process to a full par-
ticipant or to a public PaaS provider. As this func-
tionality is very simple, also small and less-powerful
devices can take on the role as such a proxy peer.

In order to allow offline payment even in decentralized
mobile ad-hoc-networks, the potential MPaaS consumer can

Peer

providers

MPaaS

consumers

Phase 1a:

Registration
PaaS

Provider
Peer

providers

MPaaS

providers

register register

Phase 1b:

Buy credit
Peer

providers

PaaS

Provider

digital

coinsMPaaS

consumers

Phase 2a:

MPaaS

invocation

Peer

providers

MPaaS

consumer

MPaaS

provider

digital

coins

Phase 2b:

Process

execution

Peer

providers

MPaaS

providers

Phase 3a:

Accounting

PaaS

Provider
Peer

providers

MPaaS

providers

digital

coins

process
metadata

+ +

digital

coins

process
metadata

+ +

metadata

+

Phase 3b:

Payment

PaaS

Provider
Peer

providers

MPaaS

providers

refund

Figure 3: Overview of the MPaaS concept

buy a suitable number of digital coins (phase 1b) represent-
ing a pre-paid value and holding a signature of the issuing
PaaS provider.

Phase 2 covers the runtime, allowing MPaaS customers to
use the resources which are shared by the peer providers by
initiating mobile processes. The process description together
with a user-defined metadata document and a digital coin
are passed to the selected MPaaS provider. By receiving
the digital coin signed by the PaaS provider, the MPaaS
provider can be sure that his contribution will be refunded
later. If the resources of the provider are not sufficient to
successfully execute the process, the process description and
the digital coins are passed on to another MPaaS provider.
As digital coins are forgery-safe, they cannot be duplicated
or used in another context. Finally, all participating parties
are recorded in the migration document’s log file until the
execution of the process is finished.

The last phase (phase 3) handles the delivery of individ-
ual log files, migration metadata logs and digital coins to
the PaaS provider. If the process’s activities have been suc-
cessfully executed, the participating parties are rewarded by
adding a certain amount of money to their account - while
the shares depend on their actual contribution (i.e. as simple
proxy providers or as full providers considering the number
of activities which have been executed). Thus, individual
log files of MPaaS providers must match the entries in the
metadata document. In case process execution has (partly)
failed, the customer’s account can be issued a partial credit.

The remainder of this paper focuses on the second phase
of the concept (cp. the highlighted part of Figure 3) which
covers the processes’ runtime. Therefore, the following sub-
sections specify which additional information has to be con-
sidered in order to ensure both a distributed execution as
intended by the MPaaS consumer as well as the necessary
refunding of MPaaS providers.

An overview of the required metadata is summarized in
Figure 4. In order to avoid influences or changes on the orig-
inal process model as originally motivated by the underlying
business process, the information necessary for migration is
kept external to the process description and is only referenc-
ing its relevant parts, i.e. its activities. Technically this can

be realized by an additional document holding the migration
metadata or as a non-modifying annotation of the process
description. However, this flexibility requires the assump-
tion of a common process consisting at least of a finite num-
ber of activities representing the tasks to be fulfilled during
process execution, and a finite number of variables holding
the data which is used by these activities. Each activity and
each variable must have the ability to be referenced by an
identifier which is unique within the process (id), and each
process itself must have an identifier which is unique for all
processes in a specified environment (unique process id).

Besides the identifier, the general part of the metadata in-
cludes the specification of the used process description lan-
guage which is needed to find an available MPaaS provider
which supports the specified language. Furthermore, if all
suitable (mobile) process engines are currently busy, the mo-
bile process is queued. Therefore, its priority tag determines
whether the process should be privileged, e.g. at a higher
cost.

3.1 Migration Metadata
If the resources of the initial MPaaS provider are not suf-

ficient to finish the execution of a given process, the process
can be passed on to another MPaaS provider (cp. [10]). Such
process migration requires that the engine has to stop the
execution of the process, document its state information and
find other process engines in order to transfer the remain-
ing process, i.e. its state and control flow to one of them.
The state of the process (process state) and the state of each
single activity (activity state) are represented by an element
of the existing migration state model (cp. [9]). Further-
more, a set of activities can be referenced as start-activities
to mark the next activity to be executed after process mi-
gration. This relieves executing devices from dealing with
activities which have already been finished - while allowing
to have multiple start-activities in case the order in which
the activities have to be executed is irrelevant or the activi-
ties should be processed in parallel. This runtime snapshot
of the migration metadata can be generated automatically,
setting the process and all activities to an initial state, and is
updated by participating MPaaS providers during the exe-
cution of the process.

However, the process initiator often wants to further in-
fluence the way the mobile process is executed (user defined
requirements). If the process is going to be migrated, one
of the most important questions is, where the execution of
the upcoming activity should be performed. The selection
type determines which strategy is used to assign one or more
activities to a specific process engine. If the selection type
is undefined the selection mechanisms corresponds with the
strategy used in the initial approach of context-based coop-
eration, where process engines are picked at random until all
activities of the process are successfully executed. The type
fixed participant or role determines that a specific executing
entity (e.g. a human, a process engine or a role) has to exe-
cute the process or a specified set of activities. As the next
participant is often determined by the control flow logic of
the process itself (as e.g. proposed by [2]), the type vari-
able indicates that the required entity is described as the
current value of one of the process’s data variables. If no
such concrete participant should be specified, but the par-
ticipant should be selected as a result of a computation (e.g.
picking the process engine which can execute as much of the

Unique

process id

General

information

Process

description

language

Priority

Migration metadata

Management metadata Log

Security Metadata Digital coin

Process description model

Process
Variable Id

1

*

1 *

Activity Id

Process

state

Activity State
Activity State

Activity state

Activity State
Activity State

Current

variable

value

(U
s
e

r-
d

e
fi
n

e
d
 r

e
q

u
ir
e

m
e

n
ts

)
(R

u
n
ti
m

e
 s

n
a

p
s
h
o

t
d

a
ta

)

Checkpoint

type

Timeout

MPaaS

participant

PaaS

signature
Amount

Serial

number

Authorized

participants
Authorized

participants
Authorized

participant

Authorized

participants
Authorized

participants

Allowed

management

action / event

*1

Checkpoint

type
Checkpoint

type

MPaaS

participant
MPaaS

participant

MPaaS

participant
MPaaS

participant

Iteration

*1

*

1

MPaaS

participant
MPaaS

participant
Back-up

participant

*1

Executed

activity

MPaaS

participant
MPaaS

participant
Recovery

action

MPaaS

participant
MPaaS

participant
MPaaS

participant

*1 MPaaS

participant
MPaaS

participant
Management

action

MPaaS

participant
MPaaS

participant
User-defined

log data

Unique

process id

Authorized

participants
Authorized

participants
Encrypted

process part

Authorized

participants
Authorized

participants
Encrypted

session key

*1

Startactivity
*

1

Startactivity
Startactivity

Selection

Strategy

Undefined

QoS and context

Algorithm

Fixed participant

or role

Variable

Checkpoint

type
Checkpoint

type
Back-up

participant

Checkpoint

type
Checkpoint

typeReceiver

MPaaS

participant
MPaaS

participant
User-defined

log request

Figure 4: MPaaS metadata model

process as possible), the respective algorithm is referenced.
Finally, the selection can rely on quality of service and con-
text information such as current workload or geographical
location.

3.2 Management Metadata and Log
As a consequence of delegation, the control flow of the

process leaves the client’s direct sphere of influence. There-
fore, the management metadata represents information asso-
ciated with the monitoring, logging, recovery and controlling
of the distributed process execution.

First, it is important to provide sufficient management
mechanisms similar to those which are utilized to control
a local (non-distributed) process execution. As an exam-
ple, the purchasing agent presented in Section 2.2 may want
to check whether the chief purchasing officer has already
started to view the proposed products - or otherwise wants

to abort process execution. However, if the process migrates,
it must be specified which participant should access which
management action. However, to rather avoid unfavorable
polling of state information by executing such management
actions, the MPaaS consumer can additionally subscribe for
a set of management events (e.g. for the completion of an
activity). In addition, during and after process execution,
intermediate and finale results of the process can be returned
to the process initiator or to another specified participant
(receiver).

Furthermore, in order to make mobile process execution
more reliable, the MPaaS consumer can request a back-up
participant which monitors the current MPaaS provider, i.e.
the progress of the process. Therefore, the MPaaS consumer
can specify one or more checkpoint types which determine
under which circumstances a copy of the latest process meta-
data has to be passed to the observer (e.g. after successful
execution of each activity). However, in case a specified
timeout is exceeded, process execution is restarted on the
basis of the latest checkpoint. In most cases, process execu-
tion will be monitored by the MPaaS consumer. However,
also the delegation of the back-up role is possible.

An important part of the management metadata is con-
stituted by the process’s log data. In order to allow an accu-
rate accounting based on the respective contribution, each
active MPaaS participant is logged together with its exe-
cuted activities. In case the activity is part of a loop, also
the respective iteration is logged. The same is necessary in
case of exceptional situations, e.g. if a process recovery has
to be carried out, and in case of other management actions,
e.g. an abort initiated by the MPaaS consumer. Further-
more, the process initiator is optionally able to specify which
additional log data should be collected in order to allow a
user-defined analysis of the process, e.g. by the collection of
activity execution times or the occurrence of specific events.

3.3 Security Metadata
To exclude malicious behavior of MPaaS participants, the

presented approach assumes a basic cryptographic key in-
frastructure, such as PKI (Public Key Infrastructure) or
subject-related shared keys which are also applicable to mo-
bile environments. Public keys and identities of participat-
ing MPaaS providers and consumers can be initiated during
registration (cp. phase 1 of Figure 3).

The integrity of the MPaaS metadata (and especially its
log data) can be ensured by using standard MACs (Mes-
sage Authentication Codes) and digital signatures for each
security-related item. However, as another important as-
pect, also the process description may contain private data
(e.g. credit card information), private control flow informa-
tion (e.g. existence of customer complaints), or identities
of persons and companies which must not be revealed to
or modified by other (external) parties. Considering the
use case scenario, the purchasing agent e.g. has to be sure
that only his supervisor executes the confirm purchase ac-
tivity - and that the purchase is not visible to competitors
or modified by malicious participants. Thus, the process
modeler should be able to decide which information should
be accessible for which participant. However, most process
description languages (such as XPDL and WS-BPEL) allow
the definition of global variables which can be referenced in
several activities - and thus might belong to more than one
participant. In consequence, these parts (i.e. activities and

Privacy

Manager

Process engine

MPaaS

components

DEMAC

components

Context

Management

Registry

Local

Services

MPaaS Interface

Management API

...

Local

Log

digital coinsprocess metadata

+ +

Migration

Manager

Local Management API

Figure 5: MPaaS provider overview

data) cannot be directly encrypted with the public key of
the authorized subjects, but are encrypted with a session
key which is only used once. Encrypted global variables can
thus be accessed by different authorized subjects using the
same session key (cp. [3]) which are included in the security
part of the MPaaS metadata. In case of an existing PKI,
the entries are encrypted with the public key of the autho-
rized subject and can be unlocked with the respective private
key. Thus, neither an additionally interaction between the
process initiator and the subjects nor an authentication is
required.

To additionally ensure the integrity of the process descrip-
tion, the process initiator is optionally able to generate a
MAC for the sensitive process part. Each peer provider
owning the appropriate session key is thus also able to verify
the integrity respectively. However, after a participant has
modified a part of the process or of the metadata it has to
generate a new MAC. This possibility is indispensable be-
cause variables and metadata entries have to be changed by
the subjects during process execution.

3.4 Payment Metadata
Digital coins hold a signature of the issuing PaaS provider

and can optionally hold a monetary value as a pre-paid
amount. If the MPaaS consumer initiates the execution
of a mobile process, the digital coin is branded so that it
can only be associated with the respective process instance
(one-way coins). If necessary, digital coins can also be made
anonymous in order to protect the buyer’s privacy. A possi-
ble approach for this scenario is the client-side generation of
anonymous coins for offline payment on the basis of group
signatures (cp. [8]) – ensuring anonymity only if the con-
sumer avoids double-spending of coins.

4. REALIZATION
The concept of context-based cooperation and the execu-

tion of mobile processes is realized by the DEMAC (Dis-
tributed Environment for Mobility Aware Computing) mid-
dleware. The respective prototype component supporting
process migration consists of a modular process engine, a
context-management system based on context federation,
and a communication system responsible for event manage-
ment and messaging (cp. [10]).

Based on the existing DEMAC platform, a prototype im-
plementation of the presented MPaaS concepts has been re-
alized (cp. Figure 5). To share their resources, all MPaaS
providers have to provide a compliant interface in order to
receive process definitions from the MPaaS consumer as well
as from other peers. To support specialized mobile devices
(e.g. devices without user interface) and mobile applica-
tions producing and initiating processes automatically, the
MPaaS functionality is offered using a mobile web service
architecture as presented in [15], allowing to provide and
consume services based on different technological capabil-
ities of individual mobile devices. The prototype MPaaS
interface is designed to support standard web services (i.e.
using HTTP, SOAP and WSDL) in order to ensure interop-
erability with stationary systems, as well as mobile web ser-
vice technologies using protocols with less description over-
head such as ASN.1 and overlay network transport (cp. [15]
for details). Furthermore, the service is published in the
distributed DEMAC registry as proposed in [16], so it can
be found and integrated dynamically whenever a potential
PaaS consumer wants to initiate an (ad-hoc) process exe-
cution. The service receives the process description and its
associated migration document as input parameters and re-
turns the unique identifier of the process and the MPaaS
provider’s signature in order to acknowledge its receipt.

The functional MPaaS service interface is complemented
by a set of management services which are encapsulated as
a lightweight version of the WSDM resource property (cp.
[7]). Existing implemented management capabilities involve
status requests as well as suspend, resume and abort requests.
The event system supports activity events (started, finished,
failed), process events (started, finished) and variable events
(variable changed) which are subscribed by the MPaaS con-
sumer by adding a respective entry to the metadata docu-
ment.

If security mechanisms such as proposed in Section 3.3
have been applied, a simple privacy manager is responsible
for decrypting and encrypting the process and relevant parts
of the metadata. Encryption of protected process parts is
realized by common procedures such as AES (Advanced En-
cryption Standard). To support processes described in XML
syntax, the specifications xml-encryption and xml-signature
by the W3C are utilized. However, concerning the “mask-
ing” of processes, it has been found that often encrypted
parts of the process are causing errors during process execu-
tion because the process engine tries to interpret encrypted
variables and activities but does not find expected content,
e.g. encrypted variables do not meet the expected data type.
Thus, the privacy manager is also responsible for exchang-
ing non-assigned encrypted parts by temporary dummy vari-
ables or activities. As encrypted process parts are not re-
quired to actually execute the assigned parts as defined by
the initiator’s security policy, this does not influence process
execution at the local site.

A downstream migration manager interprets the migra-
tion document containing migration metadata as specified in
section 3.1. It is responsible for passing the given process to
the process engine, to update process states, activity states
and log data subsequent to execution, and, if necessary, to
determine the next process participant in dependence of the
given selection type of the upcoming activity - potentially
making use of existing selection algorithms. Besides updat-
ing the process’s metadata, the migration manager writes

Consumer side:
Initiating participant:
Supported platforms: J2ME MIDP/PP, Java SE
Required protocols: TCP, HTTP or DEMAC;

ASN.1 or SOAP;
WSDL

MPaaS components: Client Application
JAR Size: < 100 KByte
Back-up participant:
Supported platforms: J2ME MIDP/PP, Java SE
Required protocols: (same as initiator)
MPaaS components: Management client
JAR Size: < 300 KByte

Provider side:
Proxy participant:
Supported platforms: J2ME MIDP/PP, Java SE
MPaaS components: MPaaS interface,

subset of migration manager
JAR Size: < 100 KByte (excl. alg.)
Full participant:
Supported platforms: J2ME PP, Java SE
Supported PDLs XPDL, WS-BPEL, DPDL
MPaaS components: all
JAR Size: < 3 MByte

Table 1: Properties of prototype components

a local log which holds information about the contribution
in the execution of external processes as well as informa-
tion about which MPaaS participant has invoked the local
MPaaS service and, if necessary, which MPaaS provider was
selected for the continuation of process execution.

Table 1 summarizes the most important properties of the
developed prototype components. To initiate process exe-
cution, the MPaaS consumer at least has to implement a
suitable communication protocol and a basic service man-
agement layer (e.g. for detection and invocation of the
MPaaS service). It furthermore has to store the digital
coins as well as the templates for the process description
and the metadata. Apart from these prerequisites, only an
application-specific client is required in order to initiate the
process, e.g. a graphical user interface. Additionally, the ad-
vanced MPaaS consumer (capable of acting as an observer
and back-up participant) has to implement a small manage-
ment client which presents a local proxy of the Management
API as provided by full MPaaS participants. Considering
the provider side, the proxy participants have to support
the interpretation and processing of the general metadata
and the user-defined requirements regarding the targeted
migration of the process (cp. Figure 4). Thus, their size
is generally dependent on the number and type of specific
algorithms in order to compute upcoming participants. Full
MPaaS participants implement the entire architecture as de-
picted in Figure 5, including the DEMAC middleware and at
least one process engine. Besides the proprietary DEMAC
process description language (DPDL), also mobility-enabled
subsets of WS-BPEL (e.g. [6]) and XPDL can be supported.

5. RELATED WORK
Initial approaches in the area of PaaS either rely on a

single powerful process management system or on a cen-
tralized cluster of process engines which knows and controls
all system resources. Although the need for mobile par-

ticipants has already been recognized, most often a stable
network infrastructure and a ubiquitous accessibility of re-
sources and services are assumed. Thus, existing commercial
PaaS solutions already allow to involve mobile human pro-
cess participants, e.g. by web browser, e-mail or sms [4], but
nevertheless, the integration of decentralized mobile process
management systems as described above is still an open is-
sue.

Relevant approaches in the area of mobile process man-
agement systems and their applicability are summarized in
Table 2: The monolithic mobile process engine Sliver [6] is
able to execute a subset of standard WS-BPEL processes
on a mobile device by invoking standard web services run-
ning on stationary servers or on the mobile device itself.
As (sub)processes are not allowed to leave the system on
which they have been initiated, the process does not need
and thus does not implement any additional distribution
or security mechanisms. As a hybrid approach, the Exot-
ica/FMDC workflow management system [1] enables mobile
clients to download single user tasks or simple sequential
activity blocks in order to perform them while temporarily
being disconnected from the central workflow server. How-
ever, decentralized execution and sharing of resources are
not supported here. As a more cooperative approach, the
WORKPAD infrastructure [11] was designed to support hu-
man rescue teams in disaster scenarios, but still requires a
central entity in order to coordinate mobile process partici-
pants at runtime. In contrast, a choreography-based work-
flow management system targeted at mobile environments
is represented by CiAN [13] which supports distribution on
the basis of process fragmentation. As the overall process is
physically cut into process fragments which are distributed
to dedicated mobile process engines, privacy of critical pro-
cess parts is not a problem. However, choreographies and
process fragmentation need a joint preparation phase for the
physical distribution of each business process, where all par-
ticipating parties have to be available. Thus this approach
is more advantageous in case of the recurrent execution of
the same process than for unfrequent ad-hoc processes. Sim-
ilarly, the approach of MobiWork [5] realizes mobile work-
flows for ad-hoc networks and is focused on the allocation
of tasks to mobile participants also using process fragmen-
tation to generate “sub-plans”. As introduced, the DEMAC
process management system [16] is able to delegate process
execution (in whole or in part) to other mobile or stationary
process engines using the concept of context-aware process
migration.

As shown in Table 2, the presented approach of MPaaS
is complementary to existing (mobile) process management
systems. The DEMAC approach of runtime delegation is
most closely related and forms the basis of the distributed
mobile PaaS system. However, other systems which focus on
the execution of an individual process description language,
e.g. Sliver, can even be integrated in order to share their
functionality, e.g. the execution of WS-BPEL processes.

6. CONCLUSION
This paper proposes a mobile PaaS solution to flexibly

share mobile and stationary process engines in order to en-
able execution of mobile processes even without the avail-
ability of an one-for-all central PaaS server. The presented
approach advances the concept of context-based cooperation
to support the user-defined migration and execution of ex-

Requirement: Sliver Exotica Cian WORKPAD MobiWork DEMAC MPaaS
R1 : Sharing of external resources - - + + + +
R2 : Payment and accounting - - - - - - +
R3 : Process privacy and security n/a - (+) - (+) - +
R4 : Traceability n/a n/a - - - - +
R5 : User-defined execution n/a n/a - - - o +
R6 : Decentralization - - o - o +
R7 : Context awareness and QoS - - o o o +
R8 : Dynamic discovery - + - - + +

Table 2: Analysis and comparison of related approaches

isting process models and proposes a management concept
as well as a basic accounting model. Regarding the identi-
fied requirements, it can be concluded that the concept of
context-based cooperation realized in the DEMAC project
together with the presented MPaaS approach fulfills most of
the given requirements (cp. Table 2).

However, a key success factor of the MPaaS system is
the number and geographic distribution of registered pri-
vate peers and thus their availability, assuming that at least
one suitable provider is available at the MPaaS consumer’s
site. If all (mobile) participants are both MPaaS consumers
and peer providers, the effectiveness of the system scales
with an increasing number of participants. More potential
consumers promise more profit for peer providers and thus
the willingness to share resources will increase. Moreover,
business processes initiated in mobile environments are often
only marginally related to the sensitive core business logic,
such as the process presented in Section 2.2. For these rea-
sons, both the necessity and willingness to cooperate is much
higher than in traditional stationary systems, but in contrast
also requires a critical mass of participating systems. Thus,
the proposed concepts still have to be evaluated in a broader
study on the acceptance of PaaS.

7. ACKNOWLEDGMENTS
The research leading to these results has received fund-

ing from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube).

8. REFERENCES
[1] G. Alonso et al. Exotica/FMDC: Handling

disconnected clients in a workflow management
system. In Cooperative Information Systems, pages
99–110, 1995.

[2] T. Bauer and P. Dadam. Efficient Distributed
Workflow Management Based on Variable Server
Assignments. In CAiSE 2000, pages 94–109, 2000.

[3] E. Bertino, S. Castano, and E. Ferrari. Securing XML
documents with Author-X. Internet Computing,
5(3):21–31, 2001.

[4] P. Fingar. Dot Cloud: The 21st Century Business
Platform Built on Cloud Computing. Meghan-Kiffer
Press, 2009.

[5] G. Hackmann et al. MobiWork: Mobile Workflow for
MANETs. Technical report, Washington Univ., 2006.

[6] G. Hackmann et al. Sliver: A BPEL Workflow Process
Execution Engine for Mobile Devices. In Int. Conf. on

Service-Oriented Computing (ICSOC 2006), pages
503–508. Springer, 2006.

[7] W. V. Heather Kreger, Vaughn Bullard. Web Services
Distributed Management: Management Using Web
Services. Technical report, OASIS, 2006.

[8] X. Hou and C. H. Tan. A New Electronic Cash Model.
In Proc. of Int. Conf. on Information Technology:
Coding and Computing (ITCC 2005), pages 374–379.
IEEE, 2005.

[9] C. P. Kunze, S. Zaplata, and W. Lamersdorf. Mobile
Processes: Enhancing Cooperation in Distributed
Mobile Environments. Journal of Computers,
2(1):1–11, 2 2007.

[10] C. P. Kunze, S. Zaplata, M. Turjalei, and
W. Lamersdorf. Enabling Context-based Cooperation:
A Generic Context Model and Management System.
In 11th Int. Conf. on Business Information Systems
(BIS 2008), pages 459–470. Springer, 2008.

[11] M. Mecella et al. WORKPAD: An Adaptive
Peer-to-Peer Software Infrastructure for Supporting
Collaborative Work of Human Operators in
Emergency/Disaster Scenarios. In Int. Symp. on
Collaborative Technologies and Systems (CTS’06),
pages 173–180. IEEE, 2006.

[12] M. Satyanarayanan. Fundamental Challenges in
Mobile Computing. In 15th ACM Symposium on
Principles of Distributed Computing, 1996.

[13] R. Sen, G.-C. Roman, and C. D. Gill. CiAN: A
Workflow Engine for MANETs. In COORDINATION
2008, pages 280–295. Springer, 2008.

[14] M. Turner, D. Budgen, and P. Brereton. Turning
Software into a Service. Computer, 36(10):38–44, 2003.

[15] S. Zaplata, V. Dreiling, and W. Lamersdorf. Realizing
mobile web services for dynamic applications. In 9th
IFIP Conf. on e-Business, e-Services, and e-Society
(I3E 2009). Springer, 9 2009.

[16] S. Zaplata, C. P. Kunze, and W. Lamersdorf.
Context-based Cooperation in Mobile Business
Environments: Managing the Distributed Execution of
Mobile Processes. Business and Information Systems
Engineering (BISE), 2009(4), 10 2009.

