A Plug-in Architecture Providing Dynamic
Negotiation Capabilities for Mobile Agents

M.T. Tu, F. Griffel, M. Merz, and W. Lamersdorf

Distributed Systems Group, Computer Science Department,
University of Hamburg
Vogt—Kolln-Str. 30, D-22527 Hamburg
{tu, griffel, merz, lamersd}@informatik.uni-hamburg.de
http://vsys-www.informatik.uni-hamburg.de

Abstract. The diversity of research and development work on agent
technology has led to a strong distinction between mobile and intelligent
agents. This paper presents an architecture aiming at providing a step
towards the integration of these two aspects, concretely by providing an
approach of dynamically embedding negotiation capabilities into mobile
agents. In particular, the requirements for enabling automated negoti-
ations including negotiation protocols and strategies, a plug-in compo-
nent architecture for realizing such requirements on mobile agents, and
the design of negotiation support building blocks as components of this
architecture are presented.

1 Introduction

In recent years, the development of agent technology has drawn particularly great
attention of people working in very different fields of computer science such as
distributed systems, artificial intelligence, system management and electronic
commerce. This at a first glance quite surprising fact is essentially based on
the appealing general supposition that agents are autonomous entities which
can perform tasks assigned to them independently, i.e. completely without user
intervention. Thus, even if there is no universally accepted definition of software
agents, autonomy is commonly considered one of the most important features
of agenthood. Due to this growing interest, the agent programming paradigm
has made considerable progress and is going to be well established, especially
through agent systems based on Java and WWW technologies such as [7,12, 17,
9] etc..

However, a consequence of the diversity of research and development work on
agent technology is that a strong distinction between “mobile” and “intelligent
agents” has emerged which can also be regarded as a distinction between location
autonomy and decision autonomy. This simple de-facto classification of agents
at present seems unfortunately inaccurate because the features of mobility and
intelligence are obviously by no means mutually exclusive or even only contrary.
And although the integration of these two qualities is certainly desired in or-
der to face the challenging requirements of realistic agent application fields such



as mobile/asynchronous computing, information retrieval, electronic commerce
etc., there have been up to now very few concrete approaches in this direction.
This paper presents an architecture aiming at providing a step towards such an
integration, concretely by providing an approach of dynamically embedding ne-
gotiation capabilities into mobile agents. Before going into this approach, some
general requirements arising from the integration problem should be mentioned:
One of the main difficulties a practical approach has to deal with is that the in-
corporation of “intelligent” capabilities into mobile software agents can become
very expensive because reasoning mechanisms, for instance, are usually much
more complex than a few “go” and “select” commands coded in simple agents
roaming the network nowadays, i.e. the agents can become literally too “fat” and
consequently, their mobility is reduced. This problem is even more severe if the
concrete purpose or task of the agent is not known ahead (at compilation time),
in which case either many agents for different tasks or very general-purpose
agents, which are likely even bigger in size, have to be built. In order to cope
with this problem, some important requirements have to be imposed on a cor-
responding system design:

— Role-specific functionality: A mobile agent should not be loaded with every
kind of available functionality or intelligent capability at the same time (as
it is usually the case with complex AT systems or human beings), but should
rather carry with him only the functionality required to fill out the actual
role(s) assigned to him at a given time, for instance “seller” or “notary” in
the context of electronic commerce.

— On-the-fly loading: Moreover, the functionality of an agent should be able
to be loaded “on demand”, i.e. at (or short before) the moment it is really
needed.

— Flexible configuration: The agent’s functionality should also be flexibly and
dynamically configurable so that it can be reused in many similar, but dif-
ferently constrained situations without having to replace its corresponding
implementation.

In order to satisfy these requirements, a flexible plug-in component architec-
ture has been designed and is being implemented in the DYNAMICS project at
University of Hamburg. Tt is used as the framework to dynamically embed the ne-
gotiation capabilities for mobile agents presented in this paper, the rest of which
is organized as follows: In section 2, the requirements for enabling automatic
negotiations, especially those concerning negotiation protocols and strategies,
are identified. Section 3 then outlines the plug-in architecture of DYNAMICS.
Next, the building blocks to support automated negotiations are described in
section 4. Implementation issues are discussed in section 5 and finally, the paper
is concluded by section 6.

2 Requirements for Enabling Automated Negotiations

One of the most obvious motivations for developing agent technology is to pro-
vide agents which are able to perform commercial transactions on behalf of the



people launching them (see, e.g., [4]). Using mobile agents in electronic commerce
is attractive for several reasons: disburdening people from routine transactions,
handling (gathering, selecting) great amounts of information in a given time,
supporting mobile device users by asynchronous communication etc. (see [1]).
Such agents would be even more useful if they could autonomously negotiate
a deal in case the default assumptions of the participants about the desired
transaction do not exactly match, much analogous to the way people carry out
business negotiations. Indeed, with negotiating agents, the possible benefit of
negotiations, i.e. finding the best possible options for a transaction, would likely
be employed much more frequently because of the low cost the agents raise in
comparison to the cost of human negotiators. However, in order to enable soft-
ware agents to carry out automatic negotiations, the process of negotiation must
first be formally specified by a respective protocol and, for each agent, a strategy
of producing the proper negotiation actions needs to be implemented. In the
following, we will discuss the requirements for formal negotiation protocols and
strategies.

2.1 Negotiation Protocols

To make software agents interact in a meaningful way with the purpose of reach-
ing an agreement, a set of rules must be defined which constrain the possible
interactions between the participating agents. The formal specification of the
rules applying to the interactions during a negotiation is usually called a nego-
tiation protocol. Even in most conventional negotiations, a set of more or less
explicit rules has to be followed to maintain a meaningful course of the nego-
tiation process. More explicit rules apply, for example, in case of an auction or
an advertised bidding, less explicit ones in case of a car purchase. Concerning
automated negotiations, the protocol has to be precise and extensive enough to
cope with all situations that may occur during a negotiation, even with those
that are not expected in human interactions. Furthermore, it has been shown
that the design of negotiation protocols may have quite sophisticated influence
on the strategic behavior of participants (see, e.g., [15]) and is also therefore
worth to be investigated thoroughly.

In order to develop a general approach to implement negotiation protocols,
the first question to be raised is which aspects of a negotiation can be regulated
or constrained by a protocol. Indeed, these aspects are manifold and can refer
to:

— Issue: A negotiation can have one or more issues, each of which is associated
with a set of fixed or negotiable attributes.

— Participants: Constraints applying to participants concern following sub-
aspects
— Roles: In many negotiation types, participants have fixed roles which de-
termine their type of relationship to the issues, e.g., customer, and therefore
which actions they can take.



— Quantity: For each role, it is to specify how many instances need to (at
minimum) or can (at maximum) be involved.

— Admission and exclusion: Conditions of when to admit and to exclude
participants need to be specified, e.g., whether 1t is possible for additional
parties to enter an on-going negotiation.

— Validation: The validity of the actions taken by the participants is to be
checked, particularly with regard to the syntactical and semantical correct-
ness of offers submitted.

— Proceeding: Constraints applying to the proceeding of a negotiation include
following sub-aspects
— Round definition and number: A negotiation process can be specified in
terms of rounds, i.e. periodical phases of exchanging offers and counter-offers,
in which case it must be precisely specified what constitutes a round as well
as the min. and max. number of rounds to be performed.

— Voting method: In order to determine the agreement of the involved par-
ties, some voting method has to be applied which 1s to be specified by the
protocol.

— Timeout: In general, every action of the participants needs to be assigned
a timeout period and timeout handling measures are to be specified.

— Truncation condition: The protocol has to specify when the negotiation
process is terminated, in case of success as well as in case of failure.

— Bindingness: In case of success, the result of a negotiation is not always
binding to all participants, e.g., in case of an auction. On the other hand,
the negotiation result could also apply to participants who have not voted
for it, as in case of a shareholders’ meeting, for example. Therefore, the
bindingness of negotiation results needs to be specified precisely.

There exist some formal mathematical treatments of negotiation protocols
which can serve as a nice theoretical basis to understand some formal aspects
of negotiation protocols (see, e.g., [11]). However, such models usually do not
consider several aspects listed above such as admission and exclusion of par-
ticipants, round definition and number, timeout and bindingness. In general,
this kind of static modeling alone does not seem appropriate to capture the dy-
namic aspects of a negotiation process. Therefore, we have chosen a Petri-net
based workflow management approach to handle negotiation protocols in the

DYNAMICS project described below.

2.2 Negotiation Strategies

Although negotiation protocols have the purpose of restricting the possible courses
of negotiation, they must obviously leave alternatives for participating parties
to choose from. In choosing between or proposing protocol-compliant alterna-
tives, each participant follows its own negotiation strategy which is normally not
disclosed to other parties. Thus, in order to enable automated negotiations us-
ing agents, it is neccessary to equip each agent with a formalized strategy to
compute actions and offers corresponding to the role it takes in the negotiation.



Formalization Criteria In order to design a general framework to implement
such negotiation strategies, it is necessary to examine the criteria that are rel-
evant for their development first. (In 4.3 we will see how such criteria are used
to specify the interfaces of a strategy component.)

— Utility function: Intuitively, the goal of a negotiation strategy is achieving
“good” results, which is achieved mainly by producing good offers. Therefore,
utility functions are required to evaluate offers according to many possible
criteria, for example price or quality of goods, time to negotiate etc.. Usually,
a combination of such criteria has to be taken into account which leads to
an optimization problem.

— Knowledge base: Then, in order to produce offers that are likely to fit a given
utility function best, some kind of knowledge base is often employed which
can contain either domain knowledge such as information about market val-
ues or specific knowledge about concrete negotiators obtained from previous
encounters such as the result of the last negotiation on the same issue.

— Protocol conformity: There is a very close relationship between negotiation
protocols and strategies. First of all| it is a necessary condition for every
concrete strategy to compute offers or actions that conform with a given
protocol.! Secondly, the protocol may have great influence on the efficiency
of a strategy. For example, exploiting the timeout for a negotiation action
specified by the protocol can be essential when negotiating with several par-
ties, as shown in [16].

Classification Criteria In principle, a negotiation strategy can be realized
by any algorithm that computes proper actions for a participant during the
negotiation. And since a wide variety of possible algorithms, most of which are
dedicated to some specific negotiation problem, has been proposed, it is not easy
to classify them in an exhausting way. However, they can be grossly classified
according to the following criteria:

— mathematical/analytical: are those strategies using some analytical method
to compute negotiation actions.

— heuristic/evolutionary: are most strategies using some kind of evolutionary
programming techniques.

— local: are strategies which do not depend on cooperation with other negotia-
tors.

— distributed: On the contrary, distributed strategies make use of cooperation
between negotiators.

The two pairs of contrasting criteria, i.e., analytical/evolutionary and lo-
cal/distributed, thus yield two dimensions to characterize the strategies. In the
next section, the differences between analytical and evolutionary strategies are
briefly discussed.

! This condition does not. apply, however, to meta-strategies (see 4.4).



Analytical versus Evolutionary Strategies Analytical and evolutionary
strategies have both been often proposed, but are based on very different com-
puting paradigms, each of which has some advantages as well as disadvantages
in comparison to the other. Whereas the first employ some kind of relatively
static mathematical model to compute negotiation actions, the latter make use
of very dynamic computing techniques which are based on evolution principles
such as selection, recombination and mutation (see [8] for an extensive treatment
of evolutionary programming techniques).

Regarding analytical strategies, there already exist quite sophisticated and
elaborated strategies for specific negotiation problems. For example, in [19], a
technique of guessing the acceptance threshold of the other party (in a bilateral
negotiation) based on the Bayesian method is presented. This technique also
demonstrates that although the computing method is static, a learning effect
can be achieved by using some knowledge base that is updated dynamically
during the negotiation, so that every negotiation can take a different course.
Analytical strategies have some advantages: They are immediately ready for
operation and have a stable, reliable behavior. The main disadvantage 1s the
potential predictability due to the underlying static model.

With evolutionary strategies, the learning effect is generally greater and also
has a different dimension, since not only the data basis can evolve, but also
the algorithms operating on these data themselves (which is called evolution
based program induction). Thus, evolutionary strategies are principally much
more creative and self-adaptable than those based on analytic models. However,
there only exist a few implementations of simple, data oriented evolutionary
negotiation strategies [13]. The main disadvantage of the evolutionary approach
is that the resulting mechanisms always need a certain inititial phase to adapt
so that they are not immediately ready for (effective) operation.

3 The DYNAMICS Architecture

The general goal of the DYNAMICS (DYNAMIcally Configurable Software)
project is the design and implementation of highly configurable software compo-
nents [6] which can be used as building blocks to assemble ready-to-use applica-
tions in a dynamic manner. With regard to mobile agents, this means that the
functionality of an agent can be composed of several independently developed
components which are plugged together. Especially, the agents should satisfy the
requirements of role-specific functionality, on-the-fly loading and flexible config-
uration mentioned in section 1. In the following, some concrete components for
building negotiating agents are introduced, which will then be described in more
detail in section 4.

3.1 Components for Building Negotiating Agents

From an external point of view, negotiating agents are opaque entities which
are just discernible by their exchange of negotiation messages. Different message



exchange mechanisms can be used to distribute a message to one (unicast) or
many (multicast) agents simultaneously, depending on the underlying negotia-
tion protocol.

As illustrated in Figure 1, however, a negotiation enabled agent in the DY-
NAMICS architecture is internally structured into the following main compo-
nents:

— Communication module (C): This component is concerned with the delivery
and processing of any kind of messages exchanged between the agents (see
4.1). When a message is recognized as a negotiation message, its content is
passed to the protocol module.

— Protocol module (P): This is the component responsible for the protocol
compliance of an agent, which implies that the content of each incoming
and outgoing negotiation message is inspected by the protocol module. It
can be implemented either as an independent entity or as a front-end of a
central protocol engine which seems more appropriate in case of protocols
with complex semantics (see 4.2).

— Strategy module (S): This is the component that implements a negotiation
strategy which is responsible for producing proper negotiation actions as
required by the protocol module. This module can also directly call the
communication module, as in case of distributed strategies (see 4.3).

1

1

1

1

! protocoll
1 central

: protocol protocol2
1 engine

1 protocol3
i x

1

Fig. 1. Main components of negotiation enabled agents

This modular structuring has some obvious advantages: The functionality of
each module 1is clearly defined by interfaces so that it can be developed indepen-
dently using very different implementation methods or algorithms, as in case of
the strategy module. Moreover, a component such as the protocol module can be
provided and/or certified by a third-party instance in order to prove the correct
behavior of an agent with respect to a protocol. In this way, a clear separation
of “private” (strategy) and “public” (protocol) matters is achieved.



3.2 Plug-in Types

In the DYNAMICS architecture, most of the application semantics of mobile
agents is realized by plug-ins which are components that can be added to and
removed from agents at run-time. This means that in the first place, these agents
can be seen as plug-in containers which provide a minimal, orthogonal function-
ality of mobile agents, i.e. mobility and persistence. Plug-in components, which
can be dynamically incorporated into agents to provide application semantics,
are classified into the following types:

— Roles: Roles are plug-ins that introduce new functionality into agents or
entities which serve as role containers. Intuitively, the functionality associ-
ated with a role represents the semantics of some business entity such as
“seller”, “buyer” or “notary”. Adding a role to a plug-in container object
means providing this object both with a new (or additional) interface and a
corresponding implementation (which may be loaded on demand).

— Substitutes: A substitute is a plug-in that is used to provide a new or replace
an existing implementation for some interface, i.e. the interface remains un-
changed.

— Configurations: A configuration plug-in is used to reconfigure an application
component dynamically. That means, both the interface and implementation
of the reconfigured component remain unchanged. Typical of a configuration
plug-in is the rule module (R) (see 4.4) which can be used to impose a
constraint, for example, about the total budget available for the negotiation,
on the strategy module. Adding such a rule module results in the plug-in
structure of negotiation enabled agents depicted in Figure 2.

Fig. 2. Completed plug-in structure of a negotiation enabled agent



4 Negotiation Support Building Blocks

In this section, we describe the functionality and outline the design of the main
modules serving as building blocks for negotiation enabled agents.

4.1 Communication Module

The communication module is a role plug-in that provides an agent with the
capability of using a communication language, or to put it figuratively, it trans-
mutes a (basic) agent into a “speaking” agent. In order to be interoperable with
other agent systems as much as possible, we have chosen to use KQML [3] for
the communication module. KQML, which was developed as part of the DARPA
Knowledge Sharing Effort [14], offers the following advantages:

— Commonly recognized standard for agent communication.

— Enabling flexible, asynchronous exchange of informations and action re-
quests.

— Applicable for many different application fields by introducing an ontology
for each field (e.g., medicine).

The communication module is itself a plug-in container in which several mes-
sage interpreters can be dynamically embedded to deal with different ontologies.
In order to identify negotiation messages, a new ontology negotiation has been
introduced. That means, when an incoming message is recognized as belonging
to the ontology negotiation, its content field is passed to the corresponding inter-
preter which performs a syntax check and then passes it further to the protocol
module.

4.2 Protocol Module

The protocol module is a substitute plug-in called by the communication module,
or more precisely, by the corresponding interpreter embedded in the communi-
cation module. The interface between these modules is basically determined by
the following parameters:

— In: Incoming negotiation message content and sender of message.
— Out: Outgoing negotiation message content, addressee(s) of message and/or
sending mode (unicast/multicast).

In case of simple negotiation protocols, which do not require any essential
coordination and synchronization between the participants, the protocol module
can be implemented as an independent component which is completely loaded
into the agent. For example, an agent participating as a prospective buyer in
an auction needs with regard to the protocol only to determine whether he is
treated correctly by the auctioneer, i.e. make sure that he is sold the good if he
made the highest last bid.



However, in case of protocols with complex semantics (see, e.g., the 3-peer
scenario described in [5]), it is more appropriate to provide the protocol module
as a front-end to a central protocol engine (as depicted in Figure 1). Such a
central engine is a specialized workflow engine executing protocols specified in
a Petri-net based workflow description language (see [10]) which is suitable to
express the dynamic aspects of a negotiation process described in section 2.1.

4.3 Strategy Module

The strategy module is a substitute plug-in called by the protocol module. The
strong protocol dependence described in 2.2 entails that the interface between
the strategy and the protocol module cannot be statically specified, i.e. using
static data types, but has to allow dynamically typed parameters:

— In: The current negotiation state is passed from the protocol to the strategy
module. What constitutes the negotiation state is mainly dependent on the
protocol.? Optionally, the protocol module can pass the set of all protocol
compliant actions, from which the strategy module can choose one to proceed
with, as in case of the contract net protocol ([2]).

— Qut: The negotiation action computed by the strategy module, for example,
a counter-offer to the last offer. Which offers are valid is also dependent on
the protocol.

Optionally, the strategy module can have interfaces to additional components
such as a knowledge base (see 2.2) or it can make use of the communication
module to interwork with other strategy modules in case of distributed strategies.

4.4 Rule Module

The rule module is a configuration plug-in for the strategy module. Gener-
ally, rules can be seen as objects that do not provide an external functionality
for the components they are plugged into through call interfaces, but rather
(re-)configure or constrain these components. The configuration effect can be
achieved by performing actions which manipulate the (external) properties of
the configured component, as shown in [18].

Rule Types Rules in the DYNAMICS architecture are classified into the fol-
lowing types:

— Invariants: An invariant is a condition that must hold true at any time with
regard to the entity it is assigned to, which can be an agent or a group of
(cooperating) agents. For example, the invariant (budget > 0) A (size
< 100) can be interpreted as: The budget the agent may use to negotiate
must be always positive and its total size must not exceed 100 units.

2 In an auction, for instance, it could be just the last bid, but for another protocol, it
might be a vector containing the negotiation states of all participants.



— Policies: A policy consists of a condition, called goal, and an action which
leads to the goal, when it does not (longer) hold. For example, the policy
P1: (budget > 100) > deposit(1000)
specifies that the action deposit(1000) is to be performed when the budget
becomes less than 100 units.

— Action rules: An action rule consists of a condition, called ¢rigger, and an
action to be performed when the trigger holds. For example, the action rule
Al: (budget < 100) — deposit(10)
specifies that the action deposit(10) is to be performed when the budget
becomes less than 100 units.*

Thus, invariants can be seen as passive rules, whereas policies and action rules
are active ones. See [18] for a detailed description of mechanisms to formalize,
evaluate, unify, compare and activate policies, most of which are applicable to
the other rule types as well.

Using Rules to Implement Meta-Strategies Using rules to configure the
strategy module can achieve the effect of general strategies, i.e. those that are
applicable for many negotiation types and in particular are not dependent on a
concrete negotiation protocol. For example, the space between two price offers
can be specified by a policy which 1s manually specified or computed by a meta-
strategy component which is protocol independent. In this way, simple general
behavior patterns expressed in terms of “cautious/patient” or “risky /fast-paced”
can be easily imposed on the strategy module and such a meta-strategy compo-
nent can be reused for different negotiation protocols and strategies.

5 Implementation Issues

An implementation which is so “dynamic” that it allows for the compositional
substitution as required by the concept of roles outlined above is quite demanding
on the system technology’s capabilities. Separating interfaces from their imple-
mentations, the possibility to substitute both of them at run—time as well as
representing and evaluating domain knowledge supporting an agent’s strategic
decisions are the main challenges.

Choosing typical object—oriented, class—based “production” languages such
as C++ or Java for realizing the required plug—in architecture leads to the

¥ Please note that in this context, “” and “—=” do not denote logical implication,
but rather serve as symbols for the “causal” relationship between a condition on the
one hand and an action on the other hand.

S

Although policies and action rules seem to have similar semantics, they are not
interchangeable, since the action of a policy must lead to the goal (otherwise, an
exception will be thrown), whereas the action in an action rule can be any arbitrary
one. To give another example, the expression A2: (budget < 100) — dieNow()
represents a correct action rule, whereas P2: (budget > 100) ¢ dieNow() does
not represent its policy counterpart.



well-known problem of class evolution of systems which treat classes as (static)
compile—time concepts. On the other hand choosing possibly more appropriate
environments like typical interpreted Al languages as Scheme or CLOS which
allow for more dynamic, (self-) modifiable systems as well as proven knowledge
representation techniques lacks the ubiquitous availability required by a mobile
agent system.

Therefore, the “pragmatic” decision for the DYNAMICS project was to build
the whole architecture on top of the widespread Java—Technology available with
minimal effort as an ubiquitous networked infrastructure. The first prototype
of the here presented pluggable agents architecture has been implemented on
top of Objectspace’s Java—based Voyager system® [12], which provides the basic
functionality for building mobile agents in a very efficient manner. The decision
has been not to choose one of the “main” agent systems like Odyssey [4] or Aglets
[7] but an infrastructure that provides a small, clear concept of movable objects,
thus keeping unnecessary overhead small, but nevertheless having a solid base to
build the specially required agent containers on. Also, Voyager’s small footprint
is well suited for ubiquitous network distribution.

The dynamic pluggability of the components which can be used to assemble a
role-specific agent is based on the generic concept of a Pluggable which is imple-
mented using the MessageFEvent mechanism of Voyager to delegate method calls
to the right target(s). The design of the main interfaces and classes implementing
this plug-in mechanism is depicted in Figure 3.

Agent L Pluggable L
IPluggable
aMethod () plug (IPluggable,

Signature)

GenericForwarder 4 MethodSelector

MessageListener IListener

messageEvent (
MessageEvent)

addsignature (
Object, Signature)

unPlug (IPluggable,

Signature)
setForwarder (

GenericForwarder

setCommand (Command
addTarget (Object,
Signature)
removeTarget (
Object, Signature)

removeSignature (
Signature)
removeTarget (
Object, Signature)
Vector getTargets (

Object)

PluggableFactory Ccor and

makePluggable ()

Class Name

abstract execute ()
setRef (Object)
setSignature (
Signature)
setArgs (Object [1)

Async

Interfaces

Methods

Pluggability

IPluggable of () syne Future

execute () execute () execute ()

Fig. 8. Class diagram for plug-in mechanism

® The version currently being used for our prototype implementation is 2.0 Beta 2



IPluggable is the interface common to all objects that can act as a plug-in
container by providing the methods plug and unPlug to add a plug-in (called
destination plug) into or remove it from the container object (or source plug).
Pluggable is one implementation of the IPluggable interface using a generic
forwarder, which can be dynamically set by the method setForwarder, to del-
egate method calls to their target objects. The GenericForwarder implements
Voyager’s MessageListener interface, defines methods for adding and remov-
ing targets of requests (addTarget and removeTarget), provides the forwarding
mechanism through the method messageEvent and enables different call se-
mantics through the method setCommand. To handle the message events, the
generic forwarder makes use of the class MethodSelector which defines meth-
ods for filtering message events based on signatures (methods addSignature,
removeSignature, select) and for determining the targets of the signatures
(methods getTargets, removeTarget). The abstract class Command provides a
generic DII mechanism for executing method calls on targets (through execute)
and defines methods for dynamically changing targets, method name and pa-
rameters to method calls. Sync, Async and Future are implementations of Com—
mand corresponding to the call semantics synchronous, asynchronous and future
in Voyager, respectively. The PluggableFactory class provides static factory
methods in order to construct plug-ins at run-time. Pluggability provides a
static method (of) in order to add the plug-in capability to an object dynami-
cally. Finally, Agent is a plain Voyager agent inheriting from Pluggable to serve
as a plug-in container and containing some (application-specific) code to admin-
ister and manipulate plug-ins based on the IPluggable interface. For example,
such an agent can have some code to determine if or when the plug-ins should
migrate with it (or when to move somewhere else). In summary, the plug-in
mechanism outlined above

— facilitates communication and cooperation between software components by
establishing a unidirectional request forwarding mechanism from source plug
to destination plug.

— allows plug-ins to register a method signature with the source plug which is
used for efficient event filtering and method selection in the source plug.

— enables the use of different call semantics in order to express the execution
dynamics of different scenarios more adaquately.

— decouples source plug and destination plug by indirecting the cooperation
mechanism through a more general message listening mechanism.

Using this dynamic plug-in framework, a set of communication modules (see
Section 4.1) including a KQML plug-in and rule modules supported by the policy
management system described in [18] have been implemented enabling agents to
switch their application level communication and changing their configurations
(state, properties) according to the tasks they are expected to do. At present,
a couple of prototype (negotiation) protocol and strategy modules are under
development giving the agents the possibilty to act in different “market scenar-
i0s” like auctions, wholesaling, black—boards and flea—markets adapting to the
varying behavior and strategies found in these scenarios.



6 Summary and Outlook

In this paper, we have presented an approach of dynamically embedding negoti-
ation capabilities into mobile agents. First, it was shown that the requirements
for enabling automatic negotiations, with respect to both negotiation protocols
and strategies, are manifold, the main consequence of which is that a framework
of corresponding building blocks has to be generic and flexible enough to be
able to support a wide variety of protocols and strategies. Then, a plug-in archi-
tecture for mobile agents consisting of four main negotiation support modules
and the corresponding plug-in types required to implement them was proposed.
Next, the design of the concrete modules was presented and finally, some relevant
implementation issues were described.

However, there are some issues which have not been addressed in this paper.
The first one concerns the question of how the agents can find appropriate part-
ners to start a negotiation in an open environment such as the Internet without
being given prior knowledge. Related to this is the question of how to establish
a group or consortium of partners which can participate in a negotiation as one
role. Another issue is how to provide as much support as possible for the execu-
tion of a negotiated result or contract. These are some questions which we are
currently examining in the context of a generic contracting service for electronic
commerce applications.

Acknowledgement This work is supported, in part, by grant no. Lal061/1-1
from the German Research Council (Deutsche Forschungsgemeinschaft, DFG).

References

1. D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G. Tsudik. [tinerant
agents for mobile computing. Technical Report RC 20010, IBM Research Division,
T.J. Watson Research Center, 1995.

2. R. Davis and R.G. Smith. Negotiation as a Metaphor for Distributed Problem
Solving. Artificial Intelligence, (20):63-109, 1983.

3. T\ Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an Agent Commu-
nication Language. In Proceedings of the Third International Conference on Infor-
mation and Knowledge Management (CIKM’94). ACM Press, November 1994.

4. General Magic. Odyssey, 1997. www.genmagic.com/agents/.

5. F. Griffel, T. Tu, M. Mnke, M. Merz, W. Lamersdorf, and M. M. da Silva. Elec-
tronic Contract Negotiation as an Application Niche for Mobile Agents. In Pro-
ceedings of the First International Wokshop on Enterprise Distributed Object Cormn-
puting, EDOC’97, Australia, pages 354-365. IEEE, Oktober 1997.

6. Frank Griffel. Componentware. dpunkt—Verlag, 1998. (In German).

IBM. Aglets, 1997. www.tri.ibm.co.jp/aglets/.

8. C. Jacob. Principia Evolvica : Simulierte Fvolution mit Mathematica. dpunkt—
Verlag, 1997. (In German).

9. Boris Liberman, Frank Griffel, Michael Merz, and Winfried Lamersdorf. Java-
Based Mobile Agents — How to Migrate, Persist, and Interact on Electronic Service

N



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Markets. In Kurt Rothermel and Radu Popescu-Zeletin, editors, Proceedings of
the First International Workshop on Mobile Agents, MA 97, Berlin, Germany,
number 1219 in LNCS, pages 27-38. Springer, April 1997.

K. Miiller—Jones, M. Merz, and W. Lamersdorf. Realisierung von Kooperationsan-
wendungen auf der Basis erweiterter Diensttypbeschreibungen. In H. Krumm,
editor, Entwicklung und Management verteiller Anwendungssysteme — Tagungs-
band des 2. Arbeitsireffens der GI/ITG Fachgruppe 'Kommunikation und verteilte
Systeme’ und der GI Fachgruppe ’Betriebssysteme’, pages 20-30. Universitat Dort-
mund, Oktober 1995. (In German).

J.P. Miiller. A Cooperation Model for Autonomous Agents. In J.P. Miller, M.J.
Wooldridge, and N.R. Jennings, editors, Intelligent Agents III: Agent Theories,
Architectures, and Languages (Proceedings of ECAI’96), LNCS. Springer, August
1996.

ObjectSpace. Voyager — core technology user guide, Dezember 1997.
wWw.objectspace.com/voyager/documentation.html.

Jim R. Oliver. On Artificial Agents for Negotiation in Electronic Commerce. PhD
thesis, Wharton, 1996. wharton.upenn.edu/"oliver27/dissertation/diss.zip.
R. Patil, R. Fikes, P. Patel-Schneider, D. McKay, T. Finin, T. Gruber, and
R. Neches. The DARPA Knowledge Sharing Effort: Progress report. In B. Nebel,
C. Rich, and W. Swartout, editors, Principles of Knowledge Representation and
Reasoning: Proc. of the Third International Conference (KR’92). Morgan Kauf-
mann, November 1992.

J. Rosenschein and G. Zlotkin. Rules of Encounter: Designing Conventions for
Automated Negotiations among Computers. MI'T Press, 1994.

T'. Sandholm and V. Lesser. Issues in Automated Negotiation and Electronic Com-
merce: Extending the Contract Net Framework. In V. Lesser, editor, Proceedings
of the First International Conference on Multi-Agent Systems (ICMAS’95), pages
328-335, San Francisco, June 1995. AAAI / MIT Press.

M. Strafer, J. Baumann, and F. Hohl. Mole - A Java Based Mobile Agent System.
In Special Issues in Object-Oriented Programming, Workshop Reader FCOOP’96,
pages 327-334. dpunkt—Verlag, 1996.

M.T. Tu, F. Griffel, M. Merz, and W. Lamersdorf. Generic Policy Management for
Open Service Markets. In H. Kénig and K. Geihs, editors, Proc. of the Int. Work-
ing Conference on Distributed Applications and Interoperable Systems (DAIS’97),
Cottbus, Germany. Chapman & Hall, September 1997.

D. Zeng and K. Sycara. How Can an Agent Learn to Negotiate? In J.P. Miiller, M.J.
Wooldridge, and N.R. Jennings, editors, Intelligent Agents IIl: Agent Theories,
Architectures, and Languages (Proceedings of ECAI’96), LNCS. Springer, August
1996.



