On the Encapsulation and Reuse of Decentralized Coordination Mechanisms:
A Layered Architecture and Design Implications

Jan Sudeikat!? and Wolfgang Renz!

'Multimedia Systems Laboratory, Hamburg University of Applied Sciences, Berliner Tor 7, 20099 Hamburg, Germany
Email: {sudeikat; wr} @informatik.haw-hamburg.de
2 Distributed Systems and Information Systems, Computer Science Department, University of
Hamburg, Vogt—Kolln-Str. 30, 22527 Hamburg, Germany
Email: 4sudeika@informatik.haw-hamburg.de

Abstract: The effective and reliable coordination of agent
activities is a momentous problem for Multi—-Agent System
(MAS) developers. Particularly challenging is the decentral-
ized coordination of agents that enables systems to exhibit
self—organization. Natural phenomena typically serve as de-
sign metaphors and developers apply Decentralized Coordi-
nation Mechanisms (DCMs) that have been inferred from bi-
ological, physical or social systems. This paper addresses the
utilization of DCMs as reusable software components.Current
development practices give little guidance for DCM selec-
tion and force developers to manually design, implement and
tune mechanism parameters ad hoc, leading to highly spe-
cialized algorithms. Here, we propose a layered software ar-
chitecture that encapsulates DCMs in (multiple) coordination
spaces. A generic, annotation—based interface allows to sep-
arate agent coordination from agent functionality, therefore
enabling DCM reuse and facilitating application (re)designs,
i.e. mechanisms exchange and parameter adjustments. Impli-
cations for development procedures are discussed and the ap-
plication of the layered architecture is exemplified in a resource
allocation case study.

Keywords: decentralized coordination, coordination mecha-
nism reuse, feedback, multi-agent system, self—organization.

1. Introduction

Conceiving distributed software systems as Multi-Agent Sys-
tems (MAS) demands the effective coordination of agent activ-
ities. Within Agent—Oriented Software Engineering (AOSE),
this is typically approached at design time by explicitly model-
ing organizational structures (commonly in terms of roles and
groups (e.g. reviewed in [15]). The derived models describe
the procedural agent activities as well as agent activity adjust-
ments, e.g. role changes [17]. The coordination of agents is de-
cided in early development phases and changing coordination
schemes enforces considerable effort.

A virtue of agent-based software development, which is
drawing increasing attention in MAS research, is its ability to
support the creation of decentralized as well as adaptive appli-
cation designs that adjust their organizational structure at run—
time [2,23]. These systems self-organize, i.e. agents interact
locally but their concurrent, autonomous activities enable the
rise of macroscopic system phenomena [23]. Prominent ex-
amples are macroscopic observable artifacts, e.g. the (short-

est path) routes that are formed by ant—algorithms, or phase
changes lead to sudden behavioral changes [18].

These macroscopic observable phenomena ca be traced
back to feedback loops that are established between agents
[27,29] (cf. section 2). Due to the inherent difficulty to antici-
pate the dynamics of non—linear feedbacks, development teams
typically take inspiration from well-known natural scenarios,
i.e. biological, physical and social phenomena that serve as
design metaphors (e.g. discussed in [12, 28]). Examinations of
the internal workings of these sources of inspiration have lead
to the definition of decentralized coordination mechanisms
(DCMs) that serve as reusable design pattern [6].

The utilization of these means to the construction of feed-
back loops within MAS is largely unexplored. Developers are
forced to decide for a coordination mechanism at early stages
of development, and then either utilize a agent platform that
natively support selected mechanism or implement them them-
selves.

In this paper, we discuss DCM mechanics and trace their
functionality back to the publication and perception of agent
local information. Based on this observation, we facilitate the
software engineering usage of DCMs, namely the reuse and
exchangeability of coordination schemes. A unifying frame-
work is presented that allows to provide a library of prede-
fined DCMs. These are accessed via a generic interface that
allows the annotation of agent models with coordination meta—
data, i.e. declarations of agent internals to be communicated or
modified by of DCM-based communications. Upon declara-
tion, the reactive functionality of DCMs is processed in the
background, therefore facilitating the separation of concerns
by detaching procedural agent functionalities from role/behav-
ior changing dynamics. Software producing organizations can
maintain libraries of coordination mechanisms to be used in-
terchangeably.

This paper is structured as follows. In the next section soft-
ware engineering approaches to the utilization of decentralized
coordination mechanisms within self—organizing MAS devel-
opment are reviewed. A layered architecture for mechanism
encapsulation and reuse is presented (section 3), followed by
an outline of a tailored development procedure (section 4). Fi-
nally, the reuse and exchange of coordination mechanisms is
exemplified (section 5), before we give concluding remarks.

2. Decentralized Agent Coordination in
Self-Organizing MAS Development

Decentralized, self—organizing processes are powerful means
to guide MAS adaptivity by the establishment and mainte-
nance of macroscopic observable, nonlinear phenomena, e.g.
phase changes [23]. However, these phenomena challenge tra-
ditional top—down and divide—and—conquer design strategies
[7,8]. Therefore, simulation—based development procedures
have been proposed [4,7]. These approach the transfer of
nature—inspired self—organizing phenomena to software ap-
plications by bottom—up development procedures. These com-
prise the (1) selection of an appropriate design metaphor (e.g.
insect societies or market dynamics) and (2) maping their con-
stituent parts to the actual application domain. Based on these
early design choices, the actual coordination mechanisms are
(3) selected and (4) implemented in a target agent architecture.
Implementation comprises the tuning of system parameters to
ensure the intended behavioral regimes.

Considerable effort has been spend to compare and classify
DCM:s, i.e. the computational means to the self—organizing co-
ordination of agents [5, 6, 12,23]. These rely on the decentral-
ized establishment of feedback loops within agent populations
[29]. Feedbacks require that agents perceive the MAS state (in-
terdependency level) and adjust their behavior (behavior adap-
tion level) according to the gained perceptions [28, 29]. Mecha-
nism dynamics typically comprise a locality of interactions and
allow perturbations, which are necessary ingredients for self—
organizing processes. Interdependency-level components can
be based on direct interactions of agents and indirect interac-
tions that are mediated by MAS environments. Direct interac-
tions between agents are based on public markers (e.g. tags as-
sociated to agents) or message / token exchange (mechanisms
reviewed in [5]). Mediated mechanisms have been classified in
[12]. A prominent example are computational fields (co-fields)
[14]. Agents emit these fields in a virtual environment to coor-
dinate agent activities. Agent architectures steer the behavior
adaption and range from purely reactive mechanisms, to adap-
tive, cooperative and generic architectures (cf. [23, 29]).

2.1 Systemic Modeling of Coordination Mechanics

Systemic modeling notions [24], i.e. the concepts of causal
links and feedback loops, have been applied to model re-
quirements on self—organizing MAS dynamics [27] and design
metaphor behaviors [28]. An adjustment of system dynamics
Causal Loop Diagrams (CLDs) [24] was given in [20] and is
utilized in figure 1 to exemplify how positive links can be re-
fined by two DCMs, namely the exchange of token and the
propagation of computational fields [5]. In this graph—based
notation, nodes denote the accumulative values of system state
variables, e.g. agent role occupations and system property vari-
ables. Edges between these nodes describe additive (+) and
subtractive (-) causalities between their accumulative values.
L.e. increases in system states cause increases of positively con-
nected system states. Negative links indicate inverse contribu-
tions. Circular structures form feedback loops that are either
balancing (B; odd number of negative links) or reinforcing (R;
even number of negative links).

A: Token-based B: Field-based

Node Types:

Multiple Nodes (typed): | Causal Link Types:
—_—
[: . # Agent Role + -
* Exhibition : additive / subtractive
Node| => i
system N,M H
O property / [N.M] Causal Loop Types:
variable R: reinforcing / B: balancing

Fig. 1. Decentralized Coordination Mechanism dynamics.

Positive links between system states can be realized by dis-
tributing fokens (figure 1; A) that represent the availability of
resources or access permissions (cf. [5]). The CLD-based no-
tation denotes that the availability of resources positively in-
fluences the availability of tokens. These in turn are used by
agents, i.e. transferred to agents (positive link) and consumed
(negative link) by agent instances, therefore leading to a bal-
ancing feedback loop that limits the amount of tokens.

Positive links can also be realized by computational fields
(cf. [5]), where sources are located in a virtual 2D space and
sense the gradients of the spatially distributed fields which
communicate application dependent information. The CLD-
based notation (figure 1; B), certain activities lead to (positive
link) the distribution of specific fields. The larger the field force
is, the more agent notice the field and adjust their local behav-
ior (positive link). Two mechanism internal properties influ-
ence field distributions as fields are (positively) propagated by
the environment and (negatively) degraded to limit field sizes.

2.2 Coordination Environments

The coordination of agents within multi—agent systems is an
essential topic for agent—based development approaches that
lead to the development of MAS environment frameworks
to facilitate agent coordination ([31]). These take inspiration
from specific coordination metaphors / mechanisms and pro-
vide reusable, metaphor specific infrastructures as well as us-
age interfaces. In [9], it has been proposed to separate coor-
dination contexts by providing multiple independent coordina-
tion environments.

3. A Layered Agent Coordination Architecture

In the following, we present a layered approach to the encap-
sulation, reuse and exchange of DCMs that provides a unifying
implementation architecture and coordination interface. Coor-
dination mechanisms are provided as services for inter—agent
coordination to encourages the separation of agent coordina-
tion and agent functionality. Accessible via a generic interface,
DCM mechanics are realized within dedicated coordination
spaces.

3.1 Decentralized Coordination Mechanism Layers

Figure 2 gives a conceptual overview on the here proposed ap-
proach to the decentralized coordination of agents. In order to
encapsulate specific coordination mechanisms, these are pro-
vided in a layer that is implemented on top of agent platforms.
Agents that are to be coordinated have to include a module that
mediates between the coordination layer and the agent internal
reasoning. Agent architecture specific elements can be anno-
tated with coordination information (cf. section 3.2) that con-
trol how modules send coordination information and modify
agent due to coordination perceptions.

CT Application-Level . generic
| I [4 agent
| Agent Agent Agent Agent | interaction
777777 R i e B e e decentral
<::> coordination
1 ol |4 @] |4 W el
Coordination Coordination Coordination
oo pacopion| S | ubicanon parcopion 9 | puiomre oo _ coordination
=" i e Il —— " publication /
EO-] | perception
(Coordination Environment) i
_ o coordination
Coordination Environment) service
usage
LT o
platform
Agent Platform service
usage

Fig. 2. A Layered approach to the encapsulation of
decentralized coordination mechanisms. Each coordination
mechanism instance provides a unique coordination space.

3.2 A Publish/Subscribe-based Coordination Interface

Enabling the reuse and exchange of DCMs demands the sep-
aration of the agent functionality from the coordination activ-
ities. This separation is realized by annotating agent models
with the information which agent internal activities are to be
published / triggered by perceptions. Mechanisms implemen-
tations provide two coordination operations, namely to pub-
lish and agent internal event and to perceive these information.
Publications are triggered by agent internal events / activities.
L.e. agents are enabled to communicate belief value changes or
agent activities via the shared coordination spaces. Perceptions
can be used to trigger agent internals, i.e. change belief values
or trigger agent internal goals / activities. The intended sepa-
ration is enabled by annotating what agents should automati-
cally published (register_publication) or vice versa which ac-
tivities should be automatically triggered by perceptions (reg-
ister_subscription). Annotations can be read in at agent startup
or registered at run—time.

When publications/perceptions are triggered is agent archi-
tecture dependent. While the decentralized communication of
MAS environment properties is in principle possible, develop-
ers will typically be concerned with coordinating agent popu-
lation members. 1. e. to communicate agent state changes (e.g.
belief updates, etc.) or agent activities (e.g. role occupations,
plan executions, etc.).

DCMs communicate application dependent information via
application independent distribution mechanisms (cf. section
2). The configuration of a DCM comprises the configuration
of both the application dependent publications / perceptions as
well as the configuration of the DCM internals (cf. figure 3).
Application dependent agent coordination configuration de-
scribes the participation of agent instances in the shared co-

ordination space that realizes DCM behavior. It consists of an-
notations to agent models that describe which agent internals
are to be communicated (publication configuration) and which
perceptions should trigger agent internal processing (percep-
tion configuration). DCM mechanics are application indepen-
dent and are defined by a communication configuration. How-
ever, agent modules communicate application dependent in-
formation. The declaration of what is to be communicated is
defined in so—called parameter mappings as part of the per-
ception and publication configurations. In addition, developers
may want to steer DCM properties by application dependent
parameters. Therefore, developers can define the strength of
publication enforcement, by mapping this DCM dependent pa-
rameter to either parameter values that are part of the com-
munication (communication parameter mapping), agent belief
values (belief mapping) or set it to fixed values.

AgentCoordinationConfiguration

1

MechanismConfiguration

L

c icationDynamic |r icati i ‘

‘r ized Coordinati
1 1
1.
" ourath
1 0.*

1
1

1 1

+direction
+element_name

+direction

[publicationEnforcement | [+distributionType |
+element_name

+element_type +element_type 3

0.*
! 0. 0.0 !
‘CommunicationParameterMapping

ParameterMapping +comm_parameter_mapping

+belief_mapping
+ixed

Application Dependent /
Mechanism Independent

Application Independent /
Mechanism Dependent

Fig. 3. The conceptual model of DCM configuration.

3.3 Realization

Figure 4 denotes the different architectural alternatives to the
realization of coordination environments. First, fully decen-
tralized designs can be conceived (figure 4; A). These emu-
late a commonly available coordination space solely by the
exchange of messages between the participating agents and
can either be directly implemented in communicating agents
or can be separated from agent implementations by a network
middleware (e.g. in the TOTA system [13]). Secondly, central-
ized architectures have been applied to provide coordination
spaces (figure 4; B). These can either be based on (1) dedicated
agents that are responsible to manage the access to coordina-
tion spaces and ensure their consistency, or on (2) specific co-
ordination platforms that are deployed on networked servers.
Prominent examples for coordination platforms are Linda style
[32] tuple spaces. In addition specific agent—oriented infras-
tructures have been revised, e.g. Cartago [21,22]. We coin
these approaches centralized since they provide commonly ac-
cessed components. Actual realizations may duplicate servers,
e.g. to increase robustness and fault tolerance. Thirdly, the co-
ordination of agents may be delegated to another MAS (figure
4; C) where those agents have the sole purpose to function as
proxies to provide coordination information. E.g. in [10] man-
ufacturing control system elements are enabled to ”send out”
mobile agents that distribute information in a common envi-
ronment.

A: Decentralized

B: Centralized
agent-based

C: Delegated

middleware-based

Execution Platform

‘ Coordination Platform

Execution Platform

Execution Platform

Execution Platform

Execution Platform

Execution Platform

Execution Platform

Execution Platform

Execution Platform

‘ Hardware Layer ‘ Hardware Layer ‘ Hardware Layer ‘ Hardware Layer

‘ Hardware Layer ‘ Hardware Layer ‘ Hardware Layer ‘ Hardware Layer

Fig. 4. Alternative implementations of decentralized coordination mechanisms. A: completely decentralized due to agent
interaction; B: centralized by distinguished agents, or dedicated middleware services; C: delegation to another MAS instance.

In order to validate the practicability of the here proposed
scheme for the separation of coordination and agent function-
ality, a prototype implementation has been revised that allows
agents which are programmed and executed within the Jadex
system' to use the previously described coordination inter-
face. Jadex provides an execution environment and develop-
ment tools that facilitate the development of Belief~-Desire—
Intention (BDI) style agents [19]. The BDI reasoning engine
is conceived as an extension to arbitrary agent middleware and
is freely available. Following the BDI model [19], beliefs de-
scribe the agent knowledge about their own state and its sur-
rounding environment. Goals describe the states which agents
try to pro—actively achieve and are typically defined in terms
of belief values. Plans provide the executable means to achieve
goals. Reactive reasoning is responsible to deliberate on the
goals to pursue and to select appropriate plans for goal achieve-
ment via means—end reasoning.

Jadex agent implementations consist of two parts. So—called
Agent Definition Files (ADFs) describe the structure of agent
types. These comprise definitions of agent beliefs, goals and
plans as well as events that occur during agent execution.
Events indicate agent internal incidents or agent external in-
fluences, e.g. sending and reception of Agent Communication
Language (ACL) messages. These declarations are made in
XML? syntax. The executable agent activities, i.e. plans, are
provided by ordinary Java® classes. The capability concept [3]
has been proposed to modularize BDI agents. Jadex facilitates
the encapsulation of clusters of beliefs, goals and plans supple-
mented by visibility rules [1]. Capabilities are defined in ADFs
as well and can be included to add functionalities to agents.

Figure 5 gives an overview on the embedded realization of
coordination interactions. In order to allow the supplement of
agent models with coordination mechanisms, developers can
reference a capability in agent models that encapsulate DCM
implementations (subcapabilities), provide the previously de-
scribed usage interface (section 3.2) and handle both DCM
perceptions as well as DCM publications.

On agent start—up, the capability processes the meta—data
(agent coordination configuration; cf. figure 3) that were anno-
tated to agent models. Additional perception and publication

Uhttp://vsis-www.informatik.uni-hamburg.de/projects/jadex/
2 http://www.w3.org/XML/
3 http://java.sun.com/

configurations can be added at run—time (register publication
/ subscribe primitives; cf. table ??). The annotations control
agent activity that is contributively executed during agent oper-
ation. These contributive activities are executed via a so—called
co—efficient extension to capabilities that have been introduced
in [26]. According to this mechanism (cf. figure 5) the capa-
bility provides additional functionality by (1) registering and
event-listener for its surrounding agent. This listener is (2) no-
tified when publishable events occur and subsequently looks—
up the type of publication that is to be communicated. The en-
capsulated DCM implementation is responsible to perform the
actual communication. When DCM implementations receive
publications, they look—up the type of agent internal reasoning
event that has been associated and dispatch it. The associa-
tions of publications and perceptions (cf. section 3.2) allow for
the declaration of parameter values that are mapped to (DCM-—
internal) communication event parameters to be transferred be-
tween agents.

/ Agent Execution Environment
N
N

reasoning element oyent-listener 1: register event-
[plan / goal]

Agent Execution Environment \
e S

~ Agent Agent

) / Agent Internal
Reasoning

" Agent Internal \ /(¢

/Coordination
Capability

‘Coordination

Reasoning
B Capability

¥
=

2: notification of 3: dispatch 4: inter-agent
listener for agent ~ reasoning event reasning event communication

<o (SO emm

Fig. 5. Realization of agent interactions.

4. Designing Decentral Coordination

The strict separation of agent activity and agent coordination
has has to be supported by MAS design and development prac-
tices. We propose two modeling levels to coexist and be sub-
ject to synchronized incremental refinement. Design models
of the agent coordination address the dynamics with which
agents collectively adjust their activities. These describe the
causal links and feedback structures (cf. section 2) that drive
the self—organizing dynamics. Agent design models are agent
architecture specific and define the agent internal structure.

4.1 Modeling Agent Coordination and Agent Activity

MAS developers face the challenge to ensure both the correct
functionality of individual agents as well as that agent coaction
lead to the intended system functionality. When the subject
of agent coactions are self—organizing dynamics, CLD-based
models of MAS dynamics are appropriate [27]. The system
states of these models are system properties as well as agent
role / group occupation counts. It allows to explicitly model
the causalities between agent activities as well as the resulting
feedbacks that steer self-organizing behaviors [20]. Therefore,
feedback structures become design artifacts themselves and
serve as subjects to refinement procedures [28] in models of
the agent coordination.

Since AOSE methodologies are typically tailored toward
specific agent architectures [25] their modeling notions and
procedures should be applied when a methodology matches the
target agent platform. AOSE modeling notions then provide
agent design models and guide agent implementations.

Both models are inherently synchronized since a subset of
the nodes of the CLD-based coordination models denote agent
role / behavior occupations. These behaviors that agents ex-
hibit are defined in the agent architecture dependent AOSE
models. The incremental refinement of these models is driven
by the introduction of fine—grained (sub-) roles, (sub—)goals
or (sub—)behaviors that detail system states. While the agent
designs describe all agent activities, reference agent coordina-
tion models only the roles / activities that are caused by other
agents. These causes may be direct inter—agent communica-
tion or mediated by environment perceptions. I.e. agent design
models are concerned with the procedural internal workings
of agents, while the coordination models provide a dynamic
view—point on the observable agent activities.

4.2 Designing MAS by Causality Refinement

The development of self-organizing MAS is typically ad-
dressed by simulation—oriented, bottum—up development pro-
cedures (cf. section 2). however, development projects typ-
ically start from well-defined macroscopic system require-
ments. When the subjects of the MAS development are self—
organizing behaviors, the intended feedback loops can be de-
scribed by the above discussed agent coordination models.
Since the here proposed architecture and usage interface (cf.
section 3) provides the means to establish causal links between
agent implementations, causal links in CLD-based models do
not only serve as abstractions but can directly be implemented.
The subjects that are to be coordinated are agent models that
may be derived from top—down AOSE methodogies [11] or
bottum—up development strategies [7].

In order to introduce top—down design techniques to self—
organizing MAS development, we propose a procedure that
is based on the incremental refinement of CLD-based MAS
models. The requirements on a self—organizing application can
be defined in CLDs that describe the causalities of macroscopic
system states [27]. Based on the macroscopic observable feed-
back loops, designers can derive sets of design metaphors that
map to the intended system behavior as discussed in [28].
These models are the subject to further refinements by de-

tailing agent roles and system properties. Finally, the specific
agent types are identified and the causal links between differ-
ent agent types are identified. DCMs provide the means for
establishing causalities between the roles of different agent
types, while the different agent roles within a specific agent
type are controlled with agent architecture internal techniques
(e.g. goal/subgoal relationships or state machines). In section
5, a similar CLD refinement is exemplified that originates from
the initial system requirements, introduces a nature-inspired
design metaphor and finally identifies a causal link between
agent types that is to be realized by applying DCMs. Their
selection is guided by systemic models that allow to infer dy-
namic properties of DCMs (cf. section 2.1) Finally, the initial
requirements — given in CLD notation — can be validated by
comparing the behavior of (prototype) MAS implementations
with CLD animations, using statistical methods [27, 30].

5. Case Study

Here, we consider how a dynamic allocation strategy that is
inspired by the foraging behavior in honey bee societies can
be added to agent implementations in a simplified resource
allocation scenario. Following the application setting that has
been examined in [16], we consider a cluster of servers that
host web services. Since the external usage of services (as
websites, etc.) is expected to vary considerably, it is intended
to allow servers to adjust their allocations on the fly to met
the changing demands on the fly. In addition, a decentralized
coordination is required to facilitate scalability and robustness.

Initially, the basic agent functionalities are conceived. Servers
are able to (1) handle requests and (2) (re—)configure, i.e. can
alternate between different services offers. Jadex agents rep-
resent servers and incoming requests are mimicked by ACL
messages. Servers register their availability as the agent plat-
form domain facilitator and (re-) configurations modifying
these registrations.

Figure 6 (A) shows the expected application behavior in
a CLD-based notation (cf. section 2). System external re-
questers make requests (jobs) that are answered by serving
teams. These teams are composed of individual servers that are
members of a team or are unbound, i.e. do not answer requests.
The dynamic allocation strategy to server teams relies on two
balancing feedback loops. The amount of jobs is to be bal-
anced by corresponding team sizes («) as well as the amount
of bound / unbound servers (3).

Insect—inspired application designs metaphors, e.g. the uti-
lization of honey bee foraging strategies [16], can guide the
realization of these feedbacks. Bee societies rely on so—called
scouts that wander an environment and report encounters of
resources that may be foraged. The availability of resources,
along with locally conceivable quality measures (distance
to nest, quality of nectar, etc.) is communicated via waggle
dances which cause foraging bees to exploit resources. Indi-
vidual foragers are free to switch to more beneficial resources
when communicated. A corresponding refinement (figure 6;
B) identifies scouting-servers (scouts) and associated servers
(foragers) as members of serving teams. Scouting servers re-
cruit servers to be associated to certain request types by com-
municating resources.

Following this design metaphor, developers have to decide
how to realize these recruitments. In order to show the reuse
and exchangeability of DCMs, we discuss how token—based as
well as field—based mechanisms can be applied to realize the
same causal link.

Using a Token—based DCM, tokens represent the availabil-
ity of resources and are distributed by the scouting servers.
Coordination annotations control when tokens are to be dis-
tributed, separating the mechanism-based interactions from the
mechanisms dependent implementation details. These details
can therefore be adjusted without changing the actual agent
implementation. In our simulations, tokens have been repre-
sented by native Java objects that are randomly distributed via
ACL messages.

Field—based mechanisms can be similarly mapped to the ap-
plication domain. L.e. agents are arranged in a (virtual) grid
and scouting servers emission computational fields represent
the availability of resources. These field have been mimicked
by a centralized Cartago* workspace [21]. The Cartago sys-
tem implements the Agents and Artifacts (A&A) coordination
model that is inspired by human cooperative working envi-
ronments [22]. So—called artifacts serve resemble objects, re-
sources and tools that agents can manipulate. Each computa-
tional field is represented by an artifact that coordination ca-
pabilities constantly observe and examine whether they are

within field range.
m ﬂ"E

ﬁ C,: Field-based

[N.M]

[o]

Fig. 6. Allocation dynamics. System requirements (A) are
refined to a insect—inspired design methaphor (B). Different
DCMs can be utilized to realize the causal link between
scouting and associated servers (C).

Agent implementations can utilize these DCMs by declar-
ing the publication and perception of DCM-based interac-
tions. These annotations are DCM independent. They provide
an interface between the application—dependent agent proper-
ties to the published / perceived and the applied DCM. List-
ing 1 shows the annotation that defines that the reception of a
(typed) perception causes the dispatchment of a specific goal
type (“change_allocation”). An optional parameter mapping al-

4 http://www.alice.unibo.it/xwiki/bin/view/CARTAGO/

lows to forward parameters of the perceived interaction, i.e.
here the type of request that is advertised by the publisher. The
attribute name indicates the name of the parameter of the ref-
erenced BDI element and the ref attribute is a reference to a
DCM internal, unique parameter identifier. Similarly publica-
tions can be indicated by changing the direction attribute.

The behavior of the DCMs is also prescribed by XML dec-
larations. Following the previously given meta—model (Mech-
anismConfiguration; cf. figure 3) the DCM specific internal
workings (CommunicationConfiguration) as well as (applica-
tion dependent) dynamic properties of the interactions (Com-
municationDynamic) can be defined. I.e. the specification of
communication dynamics has been used to map the strength of
communication to a publication value. E.g. the confidence (ap-
plication dependent integer value) that scouts have about the
need for reinforcement for a specific requests type is mapped
to the ranges of corresponding force fields.

Listing 1. Coordination Annotation: Denoting the publication

of request types. An extract from a Jadex ADF shows a goal

declaration. A coordination annotation declares that the goal
is to be dispatched when perceptions are received.

<agent>
<goals>
<!—— Agent Behavior: Change server allocation. ——>
<achievegoal name="change_allocation” >
< parameter class="String” name="service_type”/>
</achievegoal >
</goals>
</agent>

< agent_coordination_configuration >
<perceptions >
<perception type="request_type” element_type="GOAL”
element_name="change_allocation” direction ="PERCEPTION" >
< parametermapping >
< parametermapping ref="service_type” name="service_type”/>
</parametermapping >
</perception>
</perceptions >
</ agent_coordination_configuration >

6. Conclusions

In this paper, we proposed the encapsulation and reuse of
decentralized coordination mechanisms (DCMs) that provide
field—tested means to the construction of self—organizing dy-
namics within MAS. While being inspired from interdisci-
plinary biological, physical and social systems can their uti-
lization in MAS development be attributed to the ability to lo-
cally communicate application dependent information. A lay-
ered architecture has been outlined that provides coordination
mechanism as services for agent coordination. A correspond-
ing usage interface allows to separate agent functionality from
the agent coordination and therefore facilitates software en-
gineering practices, i.e. mechanism reuse, exchange and re-
design. L.e. agent implementations can be annotated with co-
ordination information. The implications of the strict separa-
tion of agent models from coordination mechanisms has been
discussed and an incremental development procedure has been
presented.

Future work will examine the utilization of causal links
and feedback structures as design and development artifacts.
The utilization of a dedicated coordination language promises
to automate the annotation of agent models and guide the
validations of DCMs usage via system simulations [27, 30]

Acknowledgments

One of us (J.S.) would like to thank the Distributed Systems
and information Systems (VSIS) group at Hamburg University,
particularly Winfried Lamersdorf, Lars Braubach and Alexan-
der Pokahr for inspiring discussion and encouragement.

References

[1]L Braubach, A Pokahr and W Lamersdorf, Extending the
capability concept for flexible BDI agent modularization. Proc.
of PROMAS-2005 2005.

[2] S Brueckner and H Czap, Organization, self-organization,
autonomy and emergence: Status and challenges. International
Transactions on Systems Science and Applications, Vol. 2, No. 1,
2006, pp. 1-9.

[3] P Busetta, N Howden, R Ronnquist and A Hodgson, Structuring
BDI agents in functional clusters. ATAL *99 2000, Springer,
pp. 277-289.

[4] T DeWolf and T Holvoet, Towards a methodolgy for engi-
neering self-organising emergent systems. Proceedings of the
International Conference on Self-Organization and Adaptation of
Multi-agent and Grid Systems 2005.

[5S]T DeWolf and T Holvoet, A catalogue of decentralised
coordination mechanisms for designing self-organising emergent
applications, Tech. Rep. Report CW 458, Department of
Computer Science, K.U. Leuven, 2006.

[6] T DeWolf and T Holvoet, Decentralised coordination mech-
anisms as design patterns for self-organising emergent appli-
cations. Proceedings of the Fourth International Workshop on
Engineering Self-Organising Applications 2006, pp. 40-61.

[7]1 B Edmonds, Using the experimental method to produce reliable
self-organised systems. Engineering Self Organising Sytems:
Methodologies and Applications 2004, no. 3464 in LNAI, pp. 84—
99.

[81B Edmonds and J J Bryson, The insufficiency of formal design
methods - the necessity of an experimental approach for the
understanding and control of complex mas. AAMAS ’04:
Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems 2004.

[9] A Gouaich and F Michel, Towards a unified view of the envi-
ronment(s) within multi-agent systems. Informatica (Slovenia),
Vol. 29, No. 4, 2005, pp. 423-432.

[10] K Hadeli, P Valckenaers, C Zamfirescu, H V Brussel, B S Ger-
main, T Hoelvoet and E Steegmans, Self-organising in multi—
agent coordination and control using stigmergy. Engineering
Self-Organising Systems 2004, LNCS, Springer Berlin / Heidel-
berg, pp. 105-123.

[11] B Henderson-Sellers and P Giorgini, Eds., Agent-oriented
Methodologies, Idea Group Publishing, 2005, ISBN:
1591405815.

[12] M Mamei, R Menezes, R Tolksdorf and F Zambonelli, Case
studies for self-organization in computer science. J. Syst. Archit.,
Vol. 52, No. 8, 2006, pp. 443—460.

[13]M Mamei and F Zambonelli, Programming stigmergic coordina-
tion with the tota middleware. AAMAS °05: Proceedings of the
fourth international joint conference on Autonomous agents and
multiagent systems New York, NY, USA, 2005, ACM, pp. 415—
422.

[14] M Mamei, F Zambonelli and L Leonardi, Co—fields: A physically
inspired approach to motion coordination. IEEE Pervasive
Computing, Vol. 03, No. 2, 2004, pp. 52-61.

[15] X Mao and E Yu, Organizational and social concepts in
agent oriented software engineering. Agent-Oriented Software
Engineering V, 5th International Workshop, AOSE 2004, Revised
Selected Papers 2004, Vol. 3382 of LNCS, Springer, pp. 1-15.

[16] S Nakrani and C Tovey, On honey bees and dynamic server
allocation in internet hosting centers. Adaptive Behavior, Vol. 12,
No. 3-4, 2004, pp. 223-240.

[17]1] Odell, H V D Parunak, S Brueckner and J Sauter, Temporal
aspects of dynamic role assignment. Agent-Oriented Software
Engineering IV 2004, Vol. 2935/2003 of LNCS, Springer,
pp. 185-214.

[18]H V D Parunak, S Brueckner and R Savit, Universality in
multi-agent systems. AAMAS ’04: Proceedings of the Third
International Joint Conference on Autonomous Agents and
Multiagent Systems 2004, IEEE Computer Society, pp. 930—
937.

[19] A S Rao and M P Georgeff, BDI-agents: from theory to practice.
Proceedings of the First Int. Conference on Multiagent Systems
1995.

[20] W Renz and J Sudeikat, Modeling feedback within mas: A
systemic approach to organizational dynamics. Proceedings of
the International Workshop on Organised Adaptation in Multi—
Agent Systems 2008, to appear.

[21] A Ricci, M Viroli and A Omicini, Cartago: A framework for
prototyping artifact-based environments in mas. Environments
for Multi-Agent Systems III 2007, D Weyns, H V D Parunak,
and F Michel, Eds., Vol. 4389 of LNCS, pp. 67-86.

[22] A Ricci, M Viroli and A Omicini, Give agents their artifacts:
the a & a approach for engineering working environments in
mas. AAMAS ’07: Proceedings of the 6th international joint
conference on Autonomous agents and multiagent systems New
York, NY, USA, 2007, ACM, pp. 1-3.

[23]G D M Serugendo, M P Gleizes and A Karageorgos, Self—
organisation and emergence in mas: An overview. Informatica
2006, Vol. 30, pp. 45-54.

[24]J D Sterman, Business Dynamics - Systems Thinking an
Modeling for a Complex World, McGraw—Hill, 2000.

[25]7J Sudeikat, L Braubach, A Pokahr and W Lamersdorf, Evaluation
of agent—oriented software methodologies - examination of the
gap between modeling and platform. Agent-Oriented Software
Engineering V, Fifth International Workshop AOSE 2004 2004,
pp. 126-141.

[26]J Sudeikat and W Renz, Monitoring group behavior in goal—
directed agents using co—efficient plan observation. Agent-
Oriented Software Engineering VII, 7th International Workshop,
AOSE 2006, Hakodate, Japan, May 8, 2006, Revised and Invited
Papers 2006.

[27]J Sudeikat and W Renz, On expressing and validating require-
ments for the adaptivity of self-organizing multi—agent systems.
System and Information Sciences Notes, Vol. 2, No. 1, 2007,
pp- 14-19.

[28]J Sudeikat and W Renz, Toward systemic mas development:
Enforcing decentralized self-organization by composition and
refinement of archetype dynamics. Proceedings of Engineering
Environment—Mediated Multiagent Systems 2007, LNCS,
Springer.

[29]J Sudeikat and W Renz, Applications of Complex Adaptive
Systems, IGI Global, 2008, ch. Building Complex Adaptive Sys-
tems: On Engineering Self-Organizing Multi-Agent Systems,
pp- 229-256.

[30]J Sudeikat and W Renz, A systemic approach to the validation of
selforganizing dynamics within mas. 9th International Workshop
on Agent Oriented Software Engineering 2008, to appear.

[31]M Viroli, T Holvoet, A Ricci, K Schelfthout and F Zambonelli,
Infrastructures for the environment of multiagent systems.
Autonomous Agents and Multi-Agent Systems, Vol. 14, No. 1,
2007, pp. 49-60.

[32] G C Wells, A G Chalmers and P G Clayton, Linda implementa-
tions in java for concurrent systems: Research articles. Concurr.
Comput. : Pract. Exper., Vol. 16, No. 10, 2004, pp. 1005-1022.

