

 1

Simulation and Implementation of Logistics Systems
based on Agent Technology

Alexander Pokahr, Lars Braubach, Jan Sudeikat
Wolfgang Renz, Winfried Lamersdorf

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg
{pokahr | braubach | lamersdorf}@informatik.uni-hamburg.de

Multimedia Systems Laboratory,
Department of Information and Electrical Engineering
Hamburg University of Applied Sciences,
{wr | sudeikat}@informatik.haw-hamburg.de

Abstract
The logistics domain offers challenging problems, which are often characterized by
specific properties that render them hard to solve. The development of IT-systems
for the logistics domain has to adequately address these characteristics in order to
provide acceptable solutions. One key problem of traditional software development
approaches is that mainstream software engineering paradigms such as object ori-
entation do not offer sufficiently rich abstractions for complex logistics problems.
In order to address this drawback in this paper an agent-based perspective for logis-
tics problems is advocated. On the one hand it is demonstrated what new concepts
agent and multi-agent systems provide and how these concepts can contribute to
the description of logistics problems and on the other hand a new development ap-
proach for multi-agent systems is presented. This approach is specifically designed
for domains in which a simulation of the application scenario is beneficial in be-
forehand of the application implementation. It allows a seamless transition between
simulation and operation models of a multi-agent system. This means that an agent-
based simulation model of the application domain can be analyzed, optimised, and
tested in a first stage of the development. Thereafter, it can be directly used as start-
ing point for the multi-agent implementation and does not require the business
logic code to be changed. The approach is tool supported by the Jadex agent
framework and its usefulness will be further explained in the context of example
applications from the health care and transportation logistics domains.

Left Header

 2

Introduction
According to Davidson and Kowalczyk (1997, p.1): “Logistics is the process of
managing the flow and storage of materials and information across the entire or-
ganization with the aim to provide the best customer service in the shortest time at
the lowest cost.” This definition highlights that logistics has to provide solutions
for resource planning and transport in the broadest sense. Examples of logistic
problems include fleet management, order management, route planning, scheduling
and cargo management. Most of these problems have in common that they are very
difficult to solve (e.g. NP-hard) and therefore no fast algorithms exist, which can
deliver optimal solutions in complex real-world situations. In the following some of
the most important characteristics will be discussed in more detail (cf. Davidson
and Kowalczyk 1997, Perugini et al. 2003):
High complexity: Logistic problems often consist of numerous components, which
exhibit complex behavior and are interconnected in various ways. Solving logistic
problems requires understanding these dynamics and providing means for manag-
ing the complexity.
Large decision space: Typically, the solution strategies for solving logistics prob-
lems can have a multitude of options at their disposal and many different decision
variables need to be taken into account. Furthermore, these options are often diffi-
cult to evaluate and prioritize.
Utilization of real-time data: Today’s logistic departments are confronted with a
fast changing world, in which many unanticipated situations can arise. In order to
stay competitive data has to be collected and processed in realtime.
Uncertainty: It is an inherent property of many business environments that only
partial or incomplete knowledge is available and decisions have to be made on ba-
sis of these imperfect knowledge. In addition, unexpected events might occur (e.g.,
emergencies, machine breakdowns) that could have severe influence on ongoing
activities and have to be handled.
Numerous decision makers: Logic processes often involve multiple decision
makers, who are involved in processes with different responsibilities. In this re-
spect it can be e.g. distinguished between the different departments a decision
maker is responsible for, e.g. marketing, managerial or operational.
Highly constrained: There are a lot of constraints that need to be fulfilled in order
to plan and carry out logistic activities. These constraints e.g. include physical con-
straints such as available storage and machine capacities as well as business objec-
tives such as production efficiency or customer satisfaction.
Distributed domains: Typically, logistics needs to solve problems that involve
complex settings consisting of physically dispersed entities and/or data. Further-
more, involved actors often have individual objectives such as keeping their rest
times, which have to be coordinated with business objectives such as achieving on
time delivery of goods.

Right Header

 3

Even though logistic settings might not expose all the aforementioned proper-
ties at once, logistics solutions and software have to embrace the existing character-
istics and handle them in an intelligent way. Considering the difficulty of logistics
problems the proposed software solutions should also fulfill some general require-
ments. Some key factors are explained in the following:
Understandability: Despite the complexity of the logistics problems the provided
software should try to mask this complexity as far as possible and provide not
overly complex usage interfaces. Furthermore, it is often beneficial that a software
system makes transparent what it does and allows users to understand how the ap-
plied solution strategy works. If decision support systems are considered this may
lead to an increased acceptance of the software (Graudina and Grundspenkis 2005,
Himoff et al. 2005).
Seamless software / operator interaction: In many logistics scenarios manual op-
erators work hand in hand with software tools supporting them. As software cannot
always be aware of all currently relevant knowledge and additionally the operator
might have long experience with certain tasks, the software should in those scenar-
ios play the role of a subordinated assistant. This means that the software should
make autonomous decisions only if explicitly authorized by the operator. Other-
wise the software should make recommendations leaving the final decisions about
its execution by the human operator (Dorer and Calisti 2005).
Robust system behavior: Logistics software systems should exhibit robust system
behavior also in unanticipated situations especially due to the great amount of un-
certainty in the domain. Concretely the software should be able to cope with unex-
pected situations and produce acceptable results also in those situations.

Existing logistics software systems try to address some of these issues but many
existing logistics problems are far from optimally solved (Davidson and
Kowalczyk 1997). Besides the inherent difficulties of the logistics problems one
key problem in the development of logistics software is that mainstream software
paradigms do not offer suitable concepts for capturing the complex entities of many
logistics scenarios. E.g. object oriented concepts are suitable for passive business
objects but fail to capture the characteristics of autonomous actors.

This paper will contribute to the improvement of software development for lo-
gistics problems at two different layers. In the next section, it will be argued at a
generic level and by using illustrative examples that the multi-agent paradigm can
provide many conceptual abstractions, which fit very well to the already introduced
logistics domain characteristics. Additionally, it will be shown that the multi-agent
properties support achieving the logistics software requirements more easily.

In section three, a new development approach for logistics applications will be
presented. The approach is suitable for scenarios in which a simulation of the sce-
nario in beneficial in beforehand to the actual system implementation. The key idea
here is to provide a seamless transition between scenario simulation and implemen-
tation in the sense that main software components need to be developed only once.

Left Header

 4

The application of the proposed development approach will be exemplified with
the help of different logistics problems. For these problems it is shown how agent-
based solutions can be derived and how the approach facilitates their development.
Section four concludes the paper with a summary and an outlook to prospective fu-
ture work.

How logistics can benefit from agent-based solutions
In this section it will be discussed which properties make agent-based approaches
attractive for handling typical logistic problems. In general it can be stated that
multi-agent systems provide natural key metaphors which facilitate a high-level
and understandable description of the problem domain and the aspired solution. In
the following the agent-based characteristics will be discussed on two different lev-
els. First the properties of individual agents and then of multi-agent systems will be
presented. For further illustration purposes, at the end of this section some real-
world applications using multi-agent technology will be sketched.

Agent characteristics
The agent characteristics discussed in the following rely on an agent definition of
Wooldridge called “strong notion of agency” (Wooldridge 2002). In general an
agent is seen as a situated entity, which interacts with its environment through sen-
sors and actuators (Luck et al. 2005).
Autonomy: Autonomy describes the property of an agent to act on his own. On a
conceptual level this means that an agent has control not only over its state but also
over its actions, i.e. it can decide on the basis of its own perception of the world
what to do next.

This autonomy reflects the local decision power of the numerous decision mak-
ers within typical logistic settings. In a software system these different responsibili-
ties can adequately be expressed using the agent metaphor. Each decision maker
can be represented by an agent, which has the purpose to act on behalf of its princi-
pal. Despite the possibility of autonomous action the degree of autonomy is con-
trollable and should be adapted to the specifics of the concrete application domain
and the responsibilities of the agent in the system.
Reactivity: An agent should be capable of performing fast reactions to changes
that might occur. Typically, an agent perceives events from its environment and
should be enabled to react to them is a timely fashion. This possibly means that the
agent has to shift its attention from the ongoing activity it performs towards the
newly occurred event and if it needs immediate processing the corresponding activ-
ity should be executed with priority. In order to allow fast reactions an agent archi-
tecture has to deal with those issues and provide appropriate means for specifying
reactive behavior.

Right Header

 5

Regarding the logistics domain reactivity is extremely important for coping
with uncertainties. One important aspect of these uncertainties are unexpected oc-
currences such as breakdown of machines or delays in delivery of goods, which
need to be considered by the logistics system as soon as possible. If the environ-
ment is monitored and occurrences are propagated to agents with reactive capabili-
ties a timely handling can be enforced.
Proactivity: A proactive agent has goals that it tries to achieve. Hence, the behav-
ior of a proactive agent is driven by internal motivations and steered not only by
reactions to environmental percepts. This allows a proactive agent to act also stra-
tegically and plan its actions in a long-term manner. In order to combine such pro-
active behavior with reactive capabilities mentioned beforehand, in the field of
multi-agent systems so called hybrid agent architectures such as PRS (procedural
reasoning system) (Rao and Georgeff 1995) have been developed. These kinds of
architectures ensure that reactive and proactive influences are balanced within the
agent and especially that proactive behavior does not prevent fast reactions.

Concerning the logistics domain proactivity allows to specify the individual ob-
jectives of the different participating entities. This means that e.g. in a transporta-
tion scenario the vehicles as well as the hubs could be represented as agents, which
are seeking to fulfill their aims. In this respect, one important vehicle objective
could be to perform transportations with high utilization.
Social abilities: An agent is equipped with communication mechanisms allowing it
to asynchronously send/receive messages to/from other agents. Agent communica-
tion is typically speech-act based (Searle 1969), i.e. agents do not only transmit a
message content but also their intention towards this content. These intentions are
described with performative verbs such as “request” for asking another agent to
perform an action or “inform” for sending knowledge to another agent. In order to
build up more complex communication forms than request-reply, interaction proto-
cols have been devised, which specify the allowed message sequences in before-
hand. Interaction protocols have been developed and standardized by FIPA1 for e.g.
English and Dutch auctions and contract-net.

The social abilities combined with the decision freedom of agents allow them
to communicate with others whenever they see need for it. In a transport setting,
truck agents could e.g. proactively communicate to other trucks nearby that the
used highway is jammed. This new knowledge gives the other truck agents the
chance to replan their current route and possibly avoid the jam. Further advantages
of coordination through communication will be discussed with regard to multi-
agent characteristics, later in this section.
Mentalistic notions: Mentalistic notions are descriptions of human mental atti-
tudes such as beliefs or goals. These notions have been used for explaining human
behavior in the context of folk psychology (Christensen and Turner 1993). Follow-

1 http://www.fipa.org

Left Header

 6

ing the ideas of the intentional stance (Dennett 1971) using mentalistic notions fa-
cilitates the understanding of complex artifacts by ascribing mental attitudes to
them, i.e. a truck drives down Church Street because it has the aim to get to the
main station, which is located in that direction. The mentalistic framework allows
for taking up an abstract point of view and helps distinguishing the underlying mo-
tivations from its concrete actions. Typically these motivations are described using
top-level goals, which are further refined into a hierarchy of plans and subgoals.

A well-known mentalistic framework is the philosophical BDI-model, which
originally aims to explain human behavior with beliefs, desires and intentions
(Bratman 1987). On basis of this model, Rao and Georgeff (1995) have proposed
the PRS architecture, which refines the BDI ideas in a software technical sense. Us-
ing the PRS architecture an agent is defined using beliefs for representing its indi-
vidual world view, desires for stating its current motivations and intentions for ex-
pressing the courses of actions it already has committed itself to.

In the context of logistic scenarios mentalistic agent descriptions can help man-
aging the complexity of behavior descriptions. As an example one can consider the
scenario in which one top-level goal of a truck agent is to bring a packet to the
main station. Depending on the delivery context different routes may be applicable,
but this does not to be considered on the highest abstraction level. Instead, lower
level plans can handle the route planning according to the delivery context and e.g.
prefer freeways if cost effectiveness is important or also consider routes liable to
charges for time-critical deliveries.

Multi-agent Characteristics
Agent-based approaches to distributed systems development exploit the agent de-
sign metaphor and conceive applications as sets of interacting agents that are inte-
grated in a common environment. In these multi-agent systems (MAS), the applica-
tion functionality results from individual agent coaction and interaction. It has been
argued that this development viewpoint extends established modeling practices and
leads to software designs that model today’s application domains in more expres-
sive abstractions (Jennings, 2001). Particularly, the development of distributed
software systems benefits from abstractions that model system components as
autonomous actors, because it often reflects existing structures. Understanding
software systems as sets of autonomous actors poses novel challenges on software
development processes, but also provides a common toolset to coordinate software
elements and exploit synergies between otherwise statically connected system ele-
ments. In the following, the main characteristics of multi-agent systems will be ex-
plained and their usefulness for logistic applications will be sketched.
Decentralized organization: MAS are inherently distributed software systems,
enabling agents to transparently communicate regardless of their location. This
transparency makes MAS subject to inherently decentral organizations, where the

Right Header

 7

physical location is abstracted and systems operate in a decentralized network of
distributed application components. The inherently decentralized nature of MAS-
based applications is a major building block for the MAS characteristics discussed
below and contributes to fault tolerance and scalability, since local failures only
have minor effects on the software application itself and new components/agents
can be connected/removed at run-time. This decentralized infrastructure is particu-
larly attractive for open environments where agents and hosts enter and leave the
system at run-time. Concerning Logistics applications, this feature, e.g, facilitates
the addition and removal of automatic guided vehicles or manufacturing machines
(cf. section 2.3).
Environment abstraction: While the physical environment is transparently hidden
from agent developers, agents themselves are expected to inhabit an application
dependent environment. The MAS environment can either be implicitly perceivable
(only message passing agents) or explicit represented (situated MAS). The envi-
ronment provides a first class abstraction to interact with MAS external compo-
nents and software frameworks are available that support modeling environment
properties and agent interactions (Viroli et al., 2007). In case of situated MAS, the
agents can interact indirectly by concurrently modifying their shared environment.
These indirect interactions are particularly useful for exploiting self-organizing
phenomena (Serugendo et al. 2006), i.e. to achieve large-scale coordination solely
by local interactions.

Since logistics is often intrinsically related to the spatial movement of vehicles,
it is particularly attractive for developers to represent the system context explicitly.
Developers can choose from established environment abstractions (Gouaich and
Michel, 2005) that are supported by software frameworks and allows to represent
the dynamics within the application context. E.g. concerning logistics the availabil-
ity of routes will be influenced by external factors like traffic jams. These applica-
tion internal events are to be represented in environment models allowing the agent
population to perceive and adjust.
Self-organizing Behavior: The inherent support for decentralized agent organiza-
tions and explicit environment models facilitates the utilization of self-organizing
phenomena, as known from biological, physical and social systems (Sudeikat and
Renz, 2008b). In these systems, agent societies coordinate themselves implicitly by
local interactions that are ignorant of the system wide implications. By providing
agents with sets of behaviors and means to select among these, based on local per-
ceptions, the adaptivity of system wide properties can be enforced. A prominent
example is the foraging behavior of ant colonies. Ant populations manage to form
shortest paths between their nest and sources of resources by exploiting stigmergy
(Brueckner and Czap, 2006). Ants that are traveling from a resource to the nest
modify their environment by releasing chemical substances (so-called pheromones)
that attract the attention of other ants. These follow the scent of evaporating phero-
mones and are recruited to exploit resources repeatedly. Since pheromones diffuse

Left Header

 8

and evaporate, the trail is enforced the most, which allows the quickest passages of
individuals.

Self-organized adaptation is in principle not related to spatial environments but
can be applied to task allocations and role adopting behaviors as well. The utiliza-
tion of decentralized coordination mechanisms as means to purposefully engineer-
ing self-organizing dynamics is an active topic of research (Sudeikat and Renz,
2008a, b, c). Particularly, for logistic settings it is interesting to allocate resources
and tasks in adaptive ways. E.g. transportation routes can be subject to adaptation
as to react on vehicles unavailability’s (e.g. repairs) and availability of new trans-
porters to address high workloads as well as to allocate trucks to specific routes. In
manufacturing line control, working examples are available that show the benefits
of the self-organizing adaptation of the routes of items in production lines (cf. sec-
tion 2.3).
Coordination mechanisms: A key concern in multi-agent systems is the coordina-
tion of agent behavior, i.e. managing the dependencies between distributed activi-
ties. A cornucopia of coordination techniques and strategies are available, each of
which represents a well-understood pattern of local activities and interaction activi-
ties that allows steering the behavior of individual agents in a desired way to
achieve overall design objectives. Coordination mechanisms can broadly be catego-
rized into cooperative and competitive approaches.

In cooperative approaches, agents work together in a benevolent way in order
to achieve one or more shared goals. Therefore, the required tasks and activities are
allocated to individual agents in a way to increase the efficiency and effectiveness
of the overall system and to dynamically reallocate tasks in the presence of unex-
pected events (e.g. traffic jam) or partial system failures (downtime of a machine).

In competitive approaches each agent has individual goals that might be in con-
flict with goals of other agents. Usually, market-based mechanisms such as auc-
tions or negotiations are used for coordinating agents in competitive settings. These
approaches also allow to represent conflicting goals inherent in the problem do-
main. E.g. in transportation logistics one usually wants to maximize utilization of
trucks (i.e. avoid tours of only partially loaded trucks), but also wants to minimize
packet delivery time. By representing individual resources (e.g. trucks and packets)
as agents that negotiate with each other, appropriate trade-offs between conflicting
goals can be established using suitable coordination strategies that move solutions
in the direction of a global optimum.
Organizational structures: The multi-agent system metaphor also naturally pro-
vides an organizational perspective. This means that organizational and social con-
cepts can be exploited for modeling software systems in analogy to human organi-
zations. In this respect three different dimensions can be distinguished (Hübner et
al. 2002). The structural dimension relates to the setup of an organization and pro-
vides concepts for a meaningful (often hierarchical) decomposition into smaller
units and for the description of their relationships. Typical notions within this area

Right Header

 9

are groups, roles and positions as proposed within the AGR (agent-group-role)
model of Ferber and Gutknecht (1998). The behavioral dimension deals with the
problem, how different agents can work together in a coordinated way to achieve
an overall objective. In this dimension typically the teamwork of agents is consid-
ered and aspects such as team formation, operation and termination play an impor-
tant role. One well-known approach here is the joint intention framework of Cohen
and Levesque (1990), which introduces mentalistic concepts such as joint persistent
goals on the group layer and ensures that the coordination between agents working
on a shared persistent goal is automatically performed. Finally, the deontic dimen-
sion is concerned with normative aspects of agent communities. The key idea is
that social norms and obligations can be established in a multi-agent system for
monitoring and enforcing benevolent behaviour of the inhabiting agents. The ob-
servation and enforcement is typically performed by an electronic institution,
which also provides the area of validity for the norms and obligations respectively.

In logistic scenarios organizational ideas can e.g. be used for naturally mapping
real-word settings. In military transport logistics the existing hierarchical troop
structure consisting of groups, subgroups and individual vehicles can be directly
used in the software design. Also, in manufacturing logistics different production
cells and their contained machines can be modeled as groups and agents. This al-
lows viewing the design at different levels and different aspects can be emphasized
if the top-level or lower-level layers are under consideration.

Agent-based Logistics Applications
The agent development paradigm plays out its strengths to handle turbulent envi-
ronments, where the activities of individual software components are subject to
failures. We conclude this section by exemplifying successful applications of
agents in logistics applications to clarify the benefits and challenges of this model-
ing and development approach. Here, we outline a selection of agent-based designs
that are related to commercial applications. First, we outline two examples that
support the scheduling decisions by domain experts, and then we denote two ap-
proaches that directly control logistic processes. These systems exemplify the usage
of agent and MAS characteristics to model logistic applications, where different
environment models, coordination mechanisms and organizational models are ap-
plied to enable MAS adaptivity.

Regarding scheduling applications one major challenge is that they must timely
respond to unforeseen events that enforce derivations from previously adopted
schedules. In dynamic transportation environments these events may comprise traf-
fic jams, transporter breakdowns, or accidents. Due to these external turbulences,
logistics companies need to respond quickly and wisely. These turbulences and the
growing complexity of large scale transportation networks challenge conventional
transportation optimization approaches (Dorer and Calisti, 2005).

Left Header

 10

The commercial MAGENTA agent platform and its I-Scheduler2 application
have been applied for the management of tanker fleets (Himoff, Skobelev and
Wooldridge, 2005). This application particularly addresses the oil transportation
market, where the frequent and unexpected fluctuations of transportation costs need
to be considered. Agent instances, which are equipped with their individual con-
straints (parameterized by domain experts), inhabit a so-called Virtual Marketplace
and negotiate their individual transportation routes. An external influence, e.g. the
availability of new shipping tasks, triggers the creation of MAS internal events.
Agents respond to these events by negotiating alternative schedules, where agents
with free transport capacities propose their availability and agents are free to swap
cargo assignments when necessary. This allows for an effective search of the space
of possible schedules, where agents ensure that their transportation constraints are
met.

This radical approach, where every transport is modeled by an individual agent
is opposed by the approach that has been adopted by Whitestein Technologies3,
where the commercial Living Systems® Adaptive Transportation Networks
(LS/ATN) platform guides the dispatchment of cargo transporters (Dorer and Cal-
isti, 2005). This platform particularly addresses large scale transportation networks
that challenge traditional planning techniques. Therefore, the transportation envi-
ronment is separated into so-called dispatching regions. Each region is handled by
dedicated agents that manage the locally available trucks. Arriving orders are tenta-
tively allocated and locally optimized. When pickup or delivery locations involve
different regions, the region’s representatives are informed and may handle the or-
der themselves. The system distinguishes between parameters that have to be met
and constraints that may potentially be violated, within tolerance ranges.

Besides these systems that support human decision makers, agents have also
been applied to directly manage transports. E.g. DaimlerChrysler (Bussmann and
Schild, 2000) addressed the control of manufacturing processes. Typical manufac-
turing lines connect machines in series and perform sequences of operations on in-
dividual items, finally leading to the addressed product. These lines suffer from
their inherent inflexibility. When machines fail, time consuming reconfigurations
are required to enable the required sequence of operations. Bussmann and Schild
(2000) have proposed to equip machines with shifting tables that enable items to
travel freely between machines. Production items, the tables and the machines are
represented by agents and items negotiate the sequence of machine interactions,
e.g. to bypass failing or fully loaded machines.

Weyns et al. (2005) examined the decentralized control of automated logistics
services for warehouses and manufacturing. Automatic guided vehicles are utilized
to transport loads within specified environments. These vehicles are typically con-

2 http://www.magenta-technology.com/en/solutionsandservices/smartresource/
3 http://www.whitestein.com/autonomic-business-solutions/logistics-supply-chain-management

Right Header

 11

trolled by a centralized server that ensures timely responses to transportation re-
quests, collision avoidance and the absence of deadlocks (i.e. the vehicles block
each others ways). In order to meet the demand for scalability and the adaptive
scheduling of transportations, vehicles have been enabled to coordinate themselves
via a virtual environment (Weyns et al., 2005), therefore allowing to add and re-
move vehicles at any time.

The presented agent-oriented designs partition the application domain in
autonomous actors (cf. section 2.1) and place them in an environment and organ-
izational context (cf. section 2.2). Each active participant (vehicle, storage facility,
etc.) is equipped with its own constraints that need to be met. Therefore, typically
centralized planning problems are transferred into a set of decentralized agent in-
teractions that allow for concurrent, distributed processing. Explicitly decentralized
models of the application domain are particularly beneficial for large scale logistics
problems as they facilitate scalability and increases robustness by the absence of
single point-of-failures. Moreover, events can be handled locally by limiting the
propagation of changes as for every event only small groups of individual agents
need to (re-)coordinate their activities.

An integrated development approach combining simulation and operation
The most critical property of logistics systems is the quality of the proposed solu-
tions, commonly measured as cost or cost reduction. Due to the complex nature of
most logistics scenarios (i.e. regarding the number of involved entities and interde-
pendencies), they are in general not open to purely analytical approaches. There-
fore, simulation plays an essential role in the area of logistics applications. On the
one hand, computational models are a helpful tool for analysts to gain a thorough
understanding of the problem domain and to identify areas for improvement of
structures and/or processes. On the other hand, simulation is important during the
development of IT systems that aim at supporting or automating activities in the
logistics planning process. Upfront simulation experiments of the system under de-
velopment provide numerous benefits:
– The employed coordination algorithms can be tested and validated against arti-

ficial as well as real data sets.
– Using real data sets, the coordination algorithms can be benchmarked against

the current status-quo strategy.
– In simulation experiments, alternative algorithms can be investigated and com-

pared and parameters can be fine-tuned.
In the following, a short overview of some available logistics simulation tools will
be presented. Furthermore, it will be shown, how simulation tools in general cur-
rently fit into the process of developing software application for the logistics area.
Some limitations of the current situation regarding the integration of simulation and
application development will be highlighted. Finally, a new approach will be pre-

Left Header

 12

sented that aims to overcome these limitations by providing a unified simulation
and application execution environment.

Simulation and Software Development
For analysis tasks, many specialized simulation tools are available that can be used,
e.g., for process optimization, what-if analysis or demand estimation. For these pur-
poses, a wide variety of domain specific (logistics) simulation tools exists, such as
SimFlex, eM-Plant, or Citilabs Cube. Besides these, also generic simulation envi-
ronments like SeSAm, RePast or AnyLogic allow to build proprietary simulation
models for concrete, domain specific analysis purposes.4

Many of these tools expose a high level of maturity and have proven their use-
fulness for logistics applications. Nevertheless, neither domain specific simulation
tools nor generic simulation environments are meant to be used for the deployment
of productive software systems. They can be used for analysis purposes, only. In
figure 1 this situation is depicted for the case of using a generic agent based simula-
tion environment.. Separate tools and platforms are used for developing and ana-
lyzing simulation models and for building and deploying the final application (left:
generic simulation environment, right: generic execution platform).

Developed Simulation ModelDeveloped Simulation Model

Generic Simulation EnvironmentGeneric Simulation Environment

Simulation Scheduler

Agent Architecture

Developed ApplicationDeveloped Application

Generic Execution PlatformGeneric Execution Platform

Execution Scheduler

Agent Architecture

Environment Adapters Application Behavior

Simulation Phase Development Phase

Environment Specification Application Behavior

Developed Simulation ModelDeveloped Simulation Model

Generic Simulation EnvironmentGeneric Simulation Environment

Simulation Scheduler

Agent Architecture

Developed ApplicationDeveloped Application

Generic Execution PlatformGeneric Execution Platform

Execution Scheduler

Agent Architecture

Environment Adapters Application Behavior

Simulation Phase Development Phase

Environment Specification Application Behavior

Figure 1: Separate simulation and development environments
The simulation environment is usually based on a simulation scheduler, which con-
trols simulation runs based on event-driven or time-stepped simulation algorithms
(Page and Kreutzer 2005). E.g. in event-driven simulation, relevant occurrences of
the simulated world are kept in an event-list and are executed in order and skipping
times where no events happen. This enables simulation tools to calculate days or
weeks of simulated time using only minutes our hours of real time. On top of the
scheduler, agent-based simulation environments provide a specialized agent archi-
tecture that usually closely corresponds to the simulation algorithm (e.g. in time-
stepped simulation, agents may have tasks that are executed in each time step). The
developer uses this specialized agent architecture to develop a simulation model,
which is usually composed of the application behavior as well as a simulation

4 See http://flextronics.com/en/SimFlex/, http://www.emplant.com/, http://www.citilabs.com/,

http://www.simsesam.de/, http://repast.sourceforge.net/, http://www.xjtek.com/

Right Header

 13

model of the environment (environment specification) providing the external
events, to which the application should react.

The basis of execution platforms is an execution scheduler that is responsible
for executing agents concurrently on the available system infrastructure like e.g.
Java EE application servers, which provide efficient mechanisms such as thread-
pooling or load-distribution. Agent architectures on these platforms range from
simple task-based agents to deliberative agents with advanced reasoning capabili-
ties. To deploy an application on such an execution infrastructure, the developer
has to provide the application behavior and additionally environment adapters,
which provide the interfaces to external system components and the outside world.

The separation of simulation and execution environments leads to a number of
consequences when software systems should be based on coordination strategies,
which are analyzed and designed in upfront simulation experiments:
– The already simulated application behavior has to be reimplemented in the de-

sired agent platform leading to a doubled development effort.
– The reimplementation needs to be validated again to check if it correctly re-

sembles the simulated coordination behavior.
– The concepts available in the simulation and runtime environment might differ

(e.g. using different agent architectures), so no one-to-one reimplementation
might be possible, thereby requiring a completely new agent design.

In the remainder of this section, a new approach is presented that unifies simulation
with application concepts and allows for an easy transition from a MAS simulation
model to a real-world MAS application. This approach completely removes the
aforementioned issues, because no reimplementation of the simulated strategy is
necessary.

Unified Approach
The big picture of the unified approach is shown in figure 2. The generic simula-
tion / execution platform provides a single agent architecture, which allows agents
to be executed by a simulation scheduler as well as a real-time execution scheduler.
This ensures that all developed application behavior can be used in the simulation
as well as development phase. During design and implementation of the application
behavior, the developer therefore does not have to consider simulation or deploy-
ment issues, as these are abstracted away by the execution environment.

Developed Simulation ModelDeveloped Simulation Model

Generic Simulation / Execution PlatformGeneric Simulation / Execution Platform

Simulation Scheduler

Developed ApplicationDeveloped Application

Execution Scheduler

Environment Adapters

Simulation Phase Development Phase

Environment Specification Application Behavior

Agent Architecture

Developed Simulation ModelDeveloped Simulation Model

Generic Simulation / Execution PlatformGeneric Simulation / Execution Platform

Simulation Scheduler

Developed ApplicationDeveloped Application

Execution Scheduler

Environment Adapters

Simulation Phase Development Phase

Environment Specification Application Behavior

Agent Architecture

Left Header

 14

Figure 2: Unified simulation and execution approach

Therefore, the approach permits the complete reuse of the agent business logic and
thereby largely reduces the application development effort, as only simulation spe-
cific components such as the artificial environment (environment specification)
have to be replaced against their real-world counterparts (environment adapters).

Besides resolving the issues mentioned in the last section (necessity of reim-
plementation and revalidation, potential differences in concepts), the approach ex-
hibits a number of additional advantages. These advantages are mainly due to the
fact that all developed application components can be used in simulation settings as
well as the productive execution.
– The approach facilitates an incremental software development process. The de-

velopment can start from abstract specifications that are only useful for pre-
liminary simulations and can be iteratively refined to more and more concrete
application behavior until the application is finally ready for deployment.

– Simulation can be used as a testing tool. During the iterative application re-
finement, simulation runs can be performed for validating the newly created
application components. Also initial acceptance tests can be performed on ap-
plication prototypes that still run in simulation mode.

– Application components can be incrementally deployed. For developing the re-
quired adapters for interfacing with the real environment, developers can per-
form a one-by-one replacement of the virtual environment with real compo-
nents. This allows testing each adapter in isolation before fully deploying the
complete application.

– Simulation can be used for training and education. Once the application is
ready to deploy, the prospective users have to be trained on how to operate the
system. As the complete system (including GUI components) can still be run on
the simulation platform, simulation scenarios can be devised in order to teach
the users on how to react in different situations.

The approach requires the availability of a generic simulation and execution plat-
form. Therefore, the different simulation and real-time execution modi have been
implemented in the Jadex agent platform. Jadex is an open source agent frame-
work5 that allows building belief-desire-intention (BDI) agents using established
technologies such as XML and Java. Agents implemented in Jadex can be deployed
on a variety of execution environments, including standalone Java applications and
the FIPA-compliant JADE platform.

Figure 3 shows the simulation control panel, which is part of the Jadex runtime
tool suite. The clock settings panel (top left) allows observing and controlling exe-
cution settings. The platform supports event-driven, time-stepped and continuous
time execution, where continuous execution is based on the system clock but al-
lows specifying an offset and a dilation factor for accelerating or slowing down the

Right Header

 15

systems execution speed. It is also possible to change these settings while the sys-
tem is running (e.g. changing the dilation factor or even switching from event-
driven simulation to real-time execution). The execution control (bottom left) al-
lows to pause and single-step the execution, which is especially useful for debug-
ging either simulation models or the application implementation. Also for debug-
ging purposes, the current list of active timers (i.e. to be performed time events,
right) can be inspected.

Figure 3: Screenshot of the Jadex simulation control panel

Application Scenarios
The combined simulation and operation facilities of the presented approach will be
illustrated in the following with two example applications. The first one is a trans-
portation logistics scenario, which makes use of simulation techniques. The second
example deals with appointment scheduling in hospitals and exploits the combined
simulation and operations.

Packet Delivery Scenario
Ruwinski und Timotin (2007) examined the applicability of the Jadex platform to
simulate a logistics transportation scenario. For this purpose, a simplified applica-
tion setting has been adopted where parcels are to be transported by heavy goods
vehicles (HGV) between redistribution centers. The utilization of a general purpose
agent platform facilitated the utilization of third party software packages, i.e. data-
base integrations, and facilitated software engineering practices. A dedicated simu-
lation setting has been conceived that enabled the parameterization, execution and
analysis of simulation runs. This support allows domain experts to parameterize the
simulation setting and agent population members and to observe (measure) system
properties, e.g. package throughput at local and global scales.

5 http://jadex.sourceforge.net

Left Header

 16

In the examined setting, a market-based coordination strategy has been applied,
i.e. parcels were equipped with certain amounts of a virtual currency to bid for
transportation by an HGV. HGVs travel between distribution centers and try to op-
timize their profit by serving different routes and negotiating transport cost with the
individual packages. A round-based negotiation protocol has been revised and is
concurrent execution is coordinated by the individual distribution centers. Simula-
tion users can adjust the negotiation strategies of the parcels and HGVs. The simu-
lations history is saved for later examination and is visualized via a dedicated
graphical user interface.

Appointment Scheduling Scenario
The objective of the DFG-funded MedPAge (Medical Path Agents) project, con-
ducted in cooperation by the Universities of Mannheim and Hamburg, was to real-
ize cross-functional patient scheduling in hospitals (Paulussen et al. 2006). Patient
scheduling is concerned with the optimal assignment of the scarce hospital resource
to the patients, whereby patients want to minimize their stay time and resources in-
tend to minimize their idle time. Patient scheduling is a complex task because the
hospital environment is characterized by a high degree of uncertainty so that emer-
gencies and complications are likely to occur.

In order to respect the distributed hospital setting and the local responsibilities
of the different wards, patient scheduling is approached via decentralized agent co-
ordination. Patient and resource agents use protocol-based negotiation strategies for
determining the next appointments. In the first project phase promising negotiation
strategies have been conceived and subsequently been implemented within a simu-
lation model. This model was used to benchmark the different approaches against
each other and especially with respect to the existing mechanism currently applied
in hospitals. In the second phase a field study within the hospital was conducted.
For this purpose a user interface was developed, which offers different views for
patient admittance, wards and resources. The interface replaces the inputs that have
been generated automatically from the simulation environment in simulation mode.
Due to the unified simulation and execution approach, the agent behavior needed
not to be changed when switching from simulation to real-time operation.

Conclusion
In this paper we argued for the applicability of agent technology to simulate and
control logistic applications. The characteristics of agents and agent-based software
systems have been outlined and related to the properties of logistics applications.
Particularly the notions of agents as autonomous, pro-active actors as well as the
agent environment provide suitable abstractions for logistics software systems.
However, simulation systems and logistics control applications typically rely on

Right Header

 17

different kinds of agent execution platforms. This gap enforces manual effort to
transfer once simulated system behavior into operational applications. Therefore, it
has been discussed how to bridge this gap and a development approach has been
proposed that allows the seamless transition between simulation and operation of a
target system. The approach is tool supported by the general purpose Jadex agent
development platform, which integrates a simulation infrastructure with an agent
execution kernel.

Future work will address the systematic usage of the approach by conceiving a
methodology for its usage. It remains to be examined how simulation and execu-
tion environments can be transferred from each other, e.g. to support iterative de-
velopment in a systematic, methodological way. In addition, the utilization of self-
organizing processes as MAS design elements and implementation components has
been proposed (cf. section 2.2). Providing these mechanisms in the Jadex agent
platform (as approached by Sudeikat and Renz, 2008c) promises a novel toolset to
steer the adaptively of logistic applications.

References
Bratman, M. (1987). Intention, Plans, and Practical Reason, Harvard University Press.
Braubach, L./Pokahr, A. /Lamersdorf, W. (2006) Tools and Standards. Multiagent Engineering -

Theory and Applications in Enterprises, Springer Series: International Handbooks on Informa-
tion Systems. Springer-Verlag.

Brueckner, S./Czap, H. (2006) Organization, Self-Organization, Autonomy and Emergence: Status
and Challenges International Transactions on Systems Science and Applications, 2, 1-9

Bussmann S./Schild K. (2000) Self-Organizing Manufacturing Control: An Industrial Application
of Agent Technology. In Proc. of the 4th Int. Conf. on Multi-agent Systems (ICMAS'2000),
Boston, MA, USA, 87-94

Cohen, P. R./Levesque, H. J. (1990). Intention is Choice with Commitment. In: Artificial Intelli-
gence 42, S. 213–261

Christensen, S. M./Turner, D. R. (1993). Folk Psychology and the Philosophy of Mind. Lawrence
Erlbaum Associates.

Davidson, I./Kowalczyk, R. (1997). Towards Better Approaches To Decision Support in Logistics
Problems, Industrial Logistics, Feb 1997.

Dennett, D. (1971). Intentional Systems. In: Journal of Philosophy (1971), Nr. 68, p. 87–106.
Dorer, K./Calisti, M. (2005) An adaptive solution to dynamic transport optimization AAMAS '05:

Proceedings of the fourth international joint conference on Autonomous agents and multiagent
systems, ACM, 45-51

Ferber, J./Gutknecht, O. (1998) Aalaadin: a meta-model for the analysis and design of organiza-
tions in multi-agent systems, Third International Conference on Multi-Agent Systems, Paris,
IEEE.

Gouaich, A./Michel, F. (2005) Towards a Unified View of the Environment(s) within Multi-Agent
Systems Informatica (Slovenia), 29, 423-432

Graudina, V./Grundspenkis, J. (2005). Technologies and multi-agent system architectures for
transportation and logistics support: An overview. In: International Conference on Computer
Systems and Technologies - CompSysTech, Varna, Bulgaria

Himoff, J. (2005). Magenta Logistics i-Scheduler. In Proceedings of the Fourth international Joint
Conference on Autonomous Agents and Multiagent Systems (The Netherlands, July 25 - 29,
2005). AAMAS '05. ACM, New York, NY, 159-160.

Left Header

 18

Himoff, J./Skobelev, P./Wooldridge, M. (2005) MAGENTA technology: multi-agent systems for
industrial logistics AAMAS '05: Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems, ACM, 60-66

Hübner, J./Sichman, J./Boissier, O. (2002). A model for the structural, functional, and deontic
specification of organizations in multiagent systems. Proceedings of the 16th Brazilian Sym-
posium on Artificial Intelligence (SBIA'02), Springer.

Jennings, N. R. (2001) Building complex, distributed systems: the case for an agent-based ap-
proach Comms. of the ACM, 44 (4), 35-41

Luck, M./ McBurney, P./Shehory, O./Willmott, S. (2005). Agent Technology: Computing as In-
teraction (A Roadmap for Agent Based Computing), AgentLink

Page, B./Kreutzer, W. (2005). The Java Simulation Handbook: Simulating Discrete Event Systems
with UML and Java, Shaker Verlag

Paulussen, T.O./Zöller, A./Heinzl, A./Braubach, L./Pokahr, A./Lamersdorf, W. (2006). Agent-
Based Patient Scheduling in Hospitals.Multiagent Engineering, Springer, Berlin, S. 255-275.

Perugini, D./Wark, S./Zschorn, A./Lambert, D./Sterling, L./Pearce, A. (2003). Agents in logistics
planning - experiences with the coalition agents experimental project. Agents at Work,
AAMAS Workshop, 2003

Rao, A./Georgeff, M. (1995). BDI Agents: From Theory to Practice. Proceedings of the First In-
ternational Conference on Multiagent Systems, The MIT Press, 312-319.

Ruwinski, W./ Timotin, D. (2007) Entwicklung eins Multiagentsystem-basierten Frameworks zur
Simulation logistischer Prozesse, Hamburg University of Applied Sciences

Searle, R. (1969). Speech Acts: an essay in the philosophy of language. Cambridge University
Press

Serugendo, G. D. M./Gleizes, M. P./Karageorgos, A. (2006) Self-Organisation and Emergence in
MAS: An Overview Informatica, 30, 45-54

Sudeikat, J./ Renz, W. (2008a) Toward Systemic MAS Development: Enforcing Decentralized
Self-Organization by Composition and Refinement of Archetype Dynamics Proceedings of:
Engineering Environment-Mediated Multiagent Systems, LNCS, Springer – to appear

Sudeikat J./Renz, W. (2008b) Building Complex Adaptive Systems: On Engineering Self-
Organizing Multi-Agent Systems, Applications of Complex Adaptive Systems, IGI Global,
229-256 R. (1969).

Sudeikat, J./Renz, W. (2008c) On the Encapsulation and Reuse of Decentralized Coordination
Mechanisms: A Layered Architecture and Design Implications
Communications of SIWN, ISSN 1757-4439, to appear

Viroli, M./Holvoet, T./Ricci, A./Schelfthout, K./Zambonelli, F. (2007) Infrastructures for the envi-
ronment of multiagent systems, Autonomous Agents and Multi-Agent Systems, Kluwer Aca-
demic Publishers, 14, 49-60

Weyns, D./Schelfthout, K./Holvoet, T./Lefever, T. (2005). Decentralized control of E'GV trans-
portation systems. AAMAS '05: Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems, ACM, 67-74.

Wooldridge, M. (2002). An Introduction to MultiAgent Systems, John Wiley and Sons

