
Goal-Oriented Interaction Protocols

Lars Braubach and Alexander Pokahr

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

{braubach | pokahr}@informatik.uni-hamburg.de

Abstract. Developing agent applications is a complex and difficult task
due to a variety of reasons. One key aspect making multi-agent systems
more complicated than traditional applications is that interaction be-
havior is based on elaborate communication forms such as negotiations
instead of simple method calls. Aimed at facilitating the specification and
usage of agent communication, agent research resulted e.g. in the defini-
tion and standardization of several general purpose interaction protocols
such as contract-net or English auction. Nevertheless, the usage of these
valuable interaction patterns currently forces developers to concentrate
on the details of message passing instead of thinking in terms of the ap-
plication domain. To alleviate this problem in this paper a goal-oriented
approach is proposed, which hides message passing details allowing de-
velopers to concentrate on the domain aspects of protocols. The new
approach is based on the BDI agent model and is implemented within
the Jadex agent framework. The advantages of the goal-based interaction
handling are further illustrated by an example application.

1 Introduction
The ability to interact with each other is generally accepted as one of the im-
portant properties of software agents [20]. Interaction is required as a means to
coordinate the actions of the individual agents of a multi-agent system (MAS)
in order to achieve overall system goals and to improve the effectiveness of the
system [11]. Despite the importance of interacting agents, realizing the neces-
sary interactions is one main source of difficulties during the development of a
multi-agent system. These difficulties stem from the fact that, unlike traditional
systems, multi-agent systems are usually inherently distributed and asynchro-
neous without any central control. Regarding the design and implementation of
interactions in a multi-agent system, developers are therefore confronted with a
multitude of conceptual and implementation related questions such as:

1. What are the objectives behind the interaction?
Macro Level 2. What are the characteristic properties of the interaction?

3. How can the interaction be described and analyzed?

4. What are the objectives of the interacting agents?
Micro Level 5. How is the interaction related to the agent architecture?

6. How is the interaction related to domain-specific behavior?



According to Ferber [11], interaction can be viewed from a macro level per-
spective (i.e. for the MAS as a whole) as well as on the micro level (i.e. consider-
ing the individual agents). In the macro level perspective, the objectives of the
system as a whole (question 1) need to be considered that aim at coordinating
the behaviour of individual agents towards establishing some global properties
of the system (e.g. using market-based coordination mechanisms to achieve fair
pricing of traded goods). Properties of interactions (question 2) can be classi-
fied according to different criteria related to the dialog structure, which can be
defined in advance as a fixed sequence of messages with only a limited number
of alternatives (called interaction protocols) or evolve dynamically according to
loose regulations allowing flexible reactions of the participants. To support a sys-
tematic construction of interactions adequate macro level description means are
necessary (question 3) that contain information about the interaction objective
as well as the specific properties. Restricting the topic to interaction protocols a
variety of techniques has been proposed in the field of multi-agent systems, such
as the well known AUML sequence diagrams [1]. Besides the description also the
analysis is important for the validation of the system, where approaches range
from formal verification to runtime monitoring of agent behavior.

The micro level perspective deals with questions regarding the implementa-
tion of the individual agents. To implement the local decision processes of the
individual agents, the developer has to lay down the individual objectives (ques-
tion 4) that apply to the steps of the interaction. After deciding on the agents
objectives, the developer is confronted with numerous implementation choices.
Nowadays, there exists a vast number of more or less mature software frame-
works supporting developers in building complex multi-agent systems [3]. These
frameworks employ different agent architectures used to define the behavior of
the agents, which are commonly based on abstract mentalistic notions (e.g. the
BDI model [4]) or on simple task-centric concepts derived from software engineer-
ing needs. Therefore, the question arises, how these internal agent architectures
relate to separately designed interactions (question 5). Finally, the developer has
to solve the problem of how to integrate the domain-specific application logic
with the previously designed interaction flow (question 6).

Despite the importance of all these questions and also of the link between
both levels this paper focuses on micro level questions (4-6) and is organized
as follows: In section 2, related work regarding the support for interactions in
multi-agent systems is presented. Section 3 describes a new approach to the
implementation of protocols for BDI-style agents, employing goals as a central
concept for establishing the connection between (external) interactions and (in-
ternal) reasoning. In section 4, the realization of this approach within the Jadex
agent framework is explained and demonstrated with an illustrative example in
section 5. The paper concludes with a summary and an outlook in section 6.

2 Related Work
Research that aims at improving the agent interaction realization can be coarsely
divided in protocol-based interactions and flexible interactions, whereby protocol-



based interactions can be subdivided in generator- and interpreter-oriented ap-
proaches. Generally, generator approaches allow transforming protocol descrip-
tions into executable code specifications. E.g. in [9] a tool is presented for the
automatic transition of AUML protocol descriptions into JADE behaviours. Fur-
ther work supports other agent platforms such as Mulan or AgentFactory as
well [7,16]. Most generator approaches produce initial code skeletons and leave
the connection with the domain logic to the developer (question 6), leading
to code maintainance problems as generic protocol code and domain-specific
code are highly intertwined. As those approaches are mostly targeted towards
simple task-centric agent platforms, the connection of protocols with the tar-
get agent architecture is currently also neglected (question 5). The alternative
are interpreter-oriented approaches that process protocol descriptions at run-
time, therefore requiring a generic mechanism that allows integrating protocol
execution with domain-specific behaviour (question 6). E.g. in [10] and [17] in-
terpreters based on (different) formalizations of AUML are proposed, whereby
the domain-dependent parts are connected via method invocations whenever a
message is received or has to be sent. These approaches still focus on message
sequences and do not provide domain level abstractions. In addition, interpreter
approaches are usually architecture-independent and therefore do not exploit the
full potential of a specific agent architecture (question 5).

Flexibility of interactions is achieved by relaxing the constraints that exist
in using predefined protocols, leading to more fault-tolerant and hence robust
communications, which are driven by the interests of the communication par-
ticipants and not by predefined sequences of message patterns. E.g. in Hermes
[8] a goal-oriented approach is proposed that focuses on the macro level ques-
tions (1-3) and aims at decomposing interactions into a hierarchy of interaction
goals, where each leaf goal represents a partial interaction. These goals enable
failure recovery and rollbacks in case of unexpected communication outcomes.
Other approaches exploit the message semantics, i.e. performative and content,
to determine how to react to a message (see e.g. the JADE semantic agent [2]
and the LS/TS SemCom [19] architecture). These approaches target question 5
and to some extend also 4 and 6, but usually employ custom control structures
instead of established agent architectures such as BDI. As standardized inter-
action protocols have proven their value in design and implementation of agent
interactions, flexible interaction approaches should be regarded as augmentation
and not as a replacement for protocol-based interaction. While Hermes does not
focus on how the partial interactions represented by leaf interaction goals should
be implemented, the sematic communication approaches currently do not allow
the use of predefined interaction protocols.

An ideal approach should address all the questions posed in the introduction.
Specifically, we think that a unfied perspective is required that considers proto-
cols with respect to their objectives, agent architecture and domain connection.
Only such a holistic view, that is achieved by none of the presented research
efforts, will enable an abstract domain-centered perception of interaction proto-
cols. The approach presented in this paper can be regarded as one step in this
direction and is motivated by the interpreter-based perspective.



3 Goal-Oriented Protocols Approach
Interaction protocols have gained high attention in the context of multi-agent
communication, as they capture established best-practices that facilitate the re-
alization of interaction-based application scenarios. Standardized protocols con-
cretize abstract mechanisms specifically designed for generic domain-independent
use-cases. Mechanism-dependent properties help deciding which protocols to use
in a concrete project setting. E.g. Wooldridge [20] proposes several general crite-
ria such as social welfare, guaranteed success or individual rationality that can be
used for comparing candidate mechanisms. When implementing the correspond-
ing protocols, developers should be enabled to concentrate on the domain-aspects
of protocols abstracting away from their concrete realization via message pass-
ing. In the following it will be discussed how the micro level questions can be
used to deduce further requirements on protocol support.

Agent objectives (question 4) that have been settled during design should
be conserved within the implementation, providing an intentional stance [14]
with respect to the conversational behavior of agents, which facilitates explain-
ability and predictability of communication. Moreover, agent developers should
be enabled to use the same concepts offered by the agent architecture also for
the implementation of agent conversations (question 5). A seamless integration
allows exploiting the full potential of the architecture and requires the protocol
support to be specifically taylored towards a suitable target architecture. Finally,
the integration of domain logic with the generic protocols (question 6) should
allow a clear separation of both aspects, facilitating the independent further
development of both aspects and e.g. understandability and maintainability of
application code. The integration should be done on an abstract level promoting
the domain-view and hiding message level details.

Starting point for the approach presented in this paper is the belief-desire-
intention model of agency (BDI-model) [4]. Interaction goals are introduced for
expressing the objectives that the individual communication partners exhibit,
serving as the connectives between a generic interaction protocol and the BDI
architecture. Goals are advantageous, because they represent the motivations
of an agent in an abstract manner, intentionally leaving open the means that
could be used for their pursuit. This allows to capture the abstract objectives
that control the agents participation during an ongoing conversation without
considering concrete activities or low-level message handling. Details regarding
the deduction of interaction goals from protocol descriptions and the integration
of domain specific behavior by the application developer are presented next.

3.1 Domain Interaction Analysis
In this section, a process is proposed allowing to deduce descriptions of goal-
oriented interaction protocols by analyzing normal AUML protocol representa-
tions [1]. In Fig. 1 a schematic view of an AUML-based goal-oriented interaction
protocol is depicted. In contrast to the original AUML representation each role
is divided into two distinct parts. The original protocol layer (middle) is domain-
independent and responsible solely for dialog control and execution of protocol



Role 1
Protocol Layer

Role 2
Protocol Layer

performative

Protocol-Name

goaltype
goalname

(in param1, in param2, …,  
out param1, out param2, …)

goaltype
goalname

(in param1, in param2, …,  
out param1, out param2, …)

goal processing start (1)

Role 1
Domain Layer

Role 2
Domain Layer

goal processing end (4)

goal processing start (2)

goal processing end (3)performative

Protocol handling

…

Fig. 1. Protocol analysis with AUML interaction diagrams

specific actions. The protocol layer is augmented by the newly introduced domain
layer (left resp. right) which encapsulates domain-relevant actions. The separa-
tion of protocols into these distinct parts helps to make explicit the interfaces
between the domain and protocol parts. The first task now consists in finding
out at which positions in each role of the protocol domain-specific activities are
necessary, who initiates these activities and when they will be finished. In the
diagram for each such action a goal description needs to be defined. This de-
scription consists of a pair of arrows indicating the beginning and ending of the
domain activity and which part of a role initiates the activity within the other
part. E.g. in the schematic view one can see that the domain layer of role 1 ini-
tiates the protocol execution via activity activation within the protocol layer of
role 1 and finally fetches the results of its execution (arrows 1 and 4). Similarly,
during protocol execution the protocol layer of role 2 needs a domain activity
being executed and delegates it to the domain layer of role 2 (arrows 2 and 3).
In a second step the goal descriptions need to be refined by specifying the more
concrete goal signatures. This means it has to be analyzed what kind of domain
activity is needed and which information needs to be transferred forth and back
between the domain and protocol part of a role. The kind of activity determines
the general goal type to be used, e.g. if information needs to be retrieved a query
goal would be appropriate and if a task needs to be executed an achieve goal
would be a good choice. An overview of the most commonly used goal types and
their application can be found in [6] and is supported by influential methodolo-
gies and modelling approaches such as KAOS [18] and Tropos [13]. In the last
step the signatures will be completed by adding detailed in- and out-parameter
descriptions which have to be deduced from the informal activity descriptions.

3.2 Integration of Domain Behavior
The domain interaction analysis process results in the specification of the indi-
vidual interaction goals of the participating agents. Interaction goals solve the
problem of connecting protocol execution and agent architecture (question 5) as
the agent applies its general reasoning strategies to handle these goals. From the
viewpoint of the protocol execution, these goals are abstract, i.e., the behavior
triggered by these goals is transparent. For the application developer, the in-



teraction goals represent the access point for supplying the domain-dependent
behavior (question 6), capturing the activities to be performed for each interac-
tion goal. Goal parameters provide access to the relevant domain and communi-
cation data (e.g. the subject-matter of a negotiation), which can be used while
executing arbitrary domain tasks. After finishing the domain tasks, the results
are made available in the out-parameters of a goal. The goal specification there-
fore provides a clean interface, allowing the domain behavior accessing necessary
information and making results of domain tasks available.

4 Realization within Jadex
The goal-oriented protocols approach is realized within the Jadex BDI agent
system [15]. Jadex aims at facilitating the development of multi-agent systems
by introducing abstract notions such as beliefs, goals and plans. It provides a
sound architecture and framework for programming goal-oriented agents using
established technologies like XML and Java. Goal-oriented protocols are a further
step towards this aim, allowing to abstract away from low-level message passing.

4.1 Realization Approach
The domain interaction analysis process allows deriving generic interaction points
from AUML protocol descriptions, which are described in terms of goals. During
protocol execution, these goals have to be handled or posted from protocol-
specifc but domain-independent agent behavior. In BDI agent systems such as
Jadex, JACK or Jason (see [3]) such behavior can be captured in generic plans
which have to be written once, and can be reused in different applications em-
ploying the same protocols. A problem with this approach is that plans are not
sufficiently expressive for representing self-contained functionalities.

Hence, Jadex implements the extended capability concept [5], which allows
to capture BDI-specific agent functionality as a reusable module. Capabilities
group together functionally related beliefs, goals, and plans and exhibit a clearly
defined interface of accessible beliefs or goals. To support the development of
agents based on goal-oriented protocols, a so called Protocols capability has
been realized as part of the current Jadex release. Based on the derived in-
teraction goals generic plans for standardized FIPA protocols1 such as Request,
(Iterated)ContractNet, as well as English- and Dutch-Auctions have been imple-
mented. While those plans are encapsulated inside the capability, the capability
exposes the necessary goals needed to control the protocol execution.

4.2 Example Protocol: Goal-Oriented Contract-Net
Fig. 2 shows the result of the domain interaction analysis for the contract-net
protocol [12]. Four different goals have been identified (two for each role). On the
initiator side the achieve cnp_initiate goal states that a task should be delegated
using a contract-net negotiation. It has mandatory in-parameters for the call-
for-proposal description (in-parameter cfp) and the potential participants (in-
parameter receivers) and an optional parameter for additional local information
1 see http://www.fipa.org



achieve
cnp_execute_request

(in proposal, in proposal_info, 
in initiator, out result)

cfp

refuse

propose

alt

achieve
cnp_initiate start

(in cfp, in receivers, inout cfp_info,
out result, out interaction_state)

alt reject-proposal

accept-proposal

failure

inform

alt

query
cnp_make_proposal

(in cfp, in initiator, out proposal,
out proposal_info)

cnp_initiate end

query
cnp_evaluate_proposals

(in cfp, in history, in proposals,
inout cfp_info, out acceptables)

cnp_receiver_interaction end

perform
cnp_receiver_interaction start
(out interaction_description,

out interaction_state, out result)

Initiator
Protocol Layer

Participant
Protocol Layer

Initiator
Domain Layer

Participant
Domain Layer

FIPA-ContractNet-Protocol

Fig. 2. Goal-oriented AUML contract-net specification (based on [12])

(in-parameter cfp_info). When the goal finishes (cnp_initiate end) the result of
the negotiation is contained in the out-parameter result.

During the automatic protocol execution three interaction points have been
identified at which the protocol layers need to initiate domain activities. First the
initiator side sends the cfp-description to all potential participants and waits for
their replies. On the participant side the query cnp_make_proposal goal is used
to retrieve a proposal (out-parameter proposal) for the received cfp-description
(in-parameter cfp). Additional information to the proposal itself can be stored in
the optional out-parameter proposal_info. The proposal (or a refuse message in
case no proposal was retrieved) will be automatically sent back to the initiator
side. The initiator side uses the query cnp_evaluate_proposals goal to let the
domain layer determine which of the received proposals (in-parameter proposals)
should be accepted (out-parameter winners). For this decision it may use the
original cfp and cfp_info values. The gained information is used to automatically
send accept resp. reject messages to the participant side. Every participant whose
proposal has been accepted utilizes the achieve cnp_execute_request goal to
instruct the domain layer to execute the given task (in-parameter task). The
result of the execution (out-parameter result) will be transferred back to the
initiator side and will be stored in the original cnp_initiate goal.

4.3 Goal-Oriented Contract-Net Implementation
Relevant parts of the contract-net implementation are shown in Fig. 3. The in-
terface of the capability mainly consists of the goals derived from the interaction
analysis discussed beforehand (lines 7-17). The protocol layer is realized by the
plans encapsulated within the capabilty (lines 18-23). Exemplarily, the specifica-
tion of the cnp_receiver_plan is shown. This plan will be created in response to
the receipt of a call-for-proposal message (cnp_cfp, line 21) and implements the



1 <capability name="Protocols" package="jadex.planlib">
2 <beliefs>
3 <belief name="cnp_filter" class="IFilter " exported="true">
4 <fact>IFilter . NEVER</fact>
5 </belief> <!−− Other beliefs omitted for brevity . −−>
6 </beliefs>
7 <goals>
8 <achievegoal name="cnp_initiate" exported="true">
9 <parameter name="cfp" class="Object"/>

10 <parameter name="cfp_info" class="Object"/>
11 <parameterset name="receivers" class="AgentIdentifier"/>
12 <parameterset name="result" class="Object" direction="out"/>
13 </achievegoal>
14 <querygoal name="cnp_evaluate_proposals" exported="true">...</querygoal>
15 <querygoal name="cnp_make_proposal" exported="true">...</querygoal>
16 <achievegoal name="cnp_execute_task" exported="true">...</achievegoal>
17 </goals>
18 <plans>
19 <plan name="cnp_receiver_plan">
20 <body>new CNPReceiverPlan()</body>
21 <trigger><messageevent ref="cnp_cfp"/></trigger>
22 </plan> <!−− Other plans omitted for brevity. −−>
23 <plans>
24 <events>
25 <messageevent name="cnp_cfp" type="fipa" exported="true">
26 <parameter name="protocol" class="String" direction="fixed">...</parameter>
27 <parameter name="performative" class="String" direction="fixed">
28 <value>SFipa.CFP</value>
29 </parameter> <!−− Other parameters omitted for brevity. −−>
30 <match>$beliefbase.cnp_filter.filter ($messagemap)</match>
31 </messageevent> <!−− Other events omitted for brevity. −−>
32 </events>
33 </capability>

Fig. 3. Cutout of the Protocols.capability.xml

participant role of the protocol. The actual code of the plan is contained in the
Java CNPReceiverPlan class (cf. line 20) and not shown here. For message han-
dling the plans make use of predefined message types (lines 24-32) derived from
the FIPA protocol specifications. As an example, the call-for-proposal message
(cnp_cfp, lines 25-31) is further illustrated. Besides some parameter specifica-
tions, e.g. for performative and protocol type (lines 26-29), this message contains
a match expression (line 30), for configuration purposes as described below.

Agents might contain several protocol capabilities for different purposes and
need to decide in which capability an incoming message should be processed.
Therefore, the cnp_filter belief (lines 3-5) provides a filter used within the match
expression. The belief (which turns off the participant role using IFilter.NEVER)
can be overridden for specifying which calls for proposals should be handled.

5 Example Application
To illustrate how the goal-oriented approach can be used in practice the book-
trading scenario from [2] is used, where personal buyer and seller agents are
responsible for trading goods such as books according to instructions given by
their principals. The market-based coordination strategy follows the contract-net



1 <agent name="Buyer" ...>
2 <goals>
3 <achievegoal name="purchase_book" recur="true" recurdelay="10000">
4 <parameter name="order" class="Order"/>
5 <targetcondition>Order.DONE.equals($goal.order.getState())</targetcondition>
6 <failurecondition >$beliefbase. time > $goal.order . getDeadline(). getTime()</failurecondition>
7 </achievegoal>
8 <achievegoalref name="df_search"><concrete ref="dfcap.df_search"/></achievegoalref>
9 <achievegoalref name="cnp_initiate"><concrete ref="procap.cnp_initiate"/></achievegoalref>

10 <querygoal name="cnp_evaluate_proposals">
11 <assignto ref="procap.cnp_evaluate_proposals"/>
12 <parameterset name="winners" class="Object" direction="out">
13 <values evaluationmode="dynamic">
14 new Object[]{ select one Integer $price from $goal. proposals
15 where ((Order)$goal. cfp_info). getAcceptablePrice () >= $price.intValue()
16 order by $price }
17 </values>
18 </parameterset> <!−− Other parameters omitted for brevity. −−>
19 </querygoal>
20 </goals>
21 <plans>
22 <plan name="purchase_book_plan">
23 <parameter name="order" class="Order">
24 <goalmapping ref="purchase_book.order"/></parameter>
25 <body>new PurchaseBookPlan()</body>
26 <trigger><goal ref="purchase_book"/></trigger>
27 </plan>
28 </plans>
29 </agent> <!−− Other elements omitted for brevity. −−>

Fig. 4. ADF excerpt of the buyer agent

protocol, equally respecting the goals of buyer and seller agents. It is assumed
that buyers take the initiator role of the protocol while sellers play the respon-
der role. The goal-oriented implementation of the booktrading example is part
of the Jadex distribution and is divided into files specific to the buyer resp. seller
agent, as well as common files (e.g. ontology and GUI classes). Both agents store
Order objects in their beliefbase, which represent the current buy or sell orders
entered by the agents principals through the user interface of each agent.

5.1 Buyer Agent Implementation
In Jadex, an agent type is described by a so called agent definition file (ADF).
Important parts of the buyer agent ADF are shown in Fig. 4. Instances of the
purchase_book goal (lines 3-7) are created when new orders are added through
the user interface. To be continuously retried whenever it fails, the goal has a
recurdelay of 10 seconds (line 3). For holding the Order object entered through
the GUI, the goal has one parameter order (line 4). In the target condition, the
goal is considered to be reached, when the order is done, i.e. the desired book
was successfully bought (line 5). When the book could not be obtained before
the order deadline, the goal fails (line 6). To search for agents providing specific
services and to initiate a contract-net interaction, the df_search goal (line 8) and
the cnp_initiate goal (line 9) are included. During the execution of the contract-
net interaction, which is performed inside the generic protocols capability, an
instance of the cnp_evaluate_proposals goal (lines 10-19) is posted, when all



1 public void body() {
2 IGoal df_search = createGoal("df_search");
3 df_search.getParameter("description "). setValue(getPropertybase(). getProperty("service_seller "));
4 dispatchSubgoalAndWait(df_search);
5 AgentDescription[] result = (AgentDescription[]) df_search.getParameterSet("result "). getValues();
6 if (result . length == 0) fail ();
7 AgentIdentifier [] sellers = new AgentIdentifier [ result . length ];
8 for (int i = 0; i < result . length ; i ++)
9 sellers [ i ] = result [ i ]. getName();

10
11 Order order = (Order)getParameter("order").getValue();
12 IGoal cnp = createGoal("cnp_initiate ");
13 cnp.getParameter("content").setValue(order . getTitle ());
14 cnp.getParameterSet("receivers "). addValues(sellers );
15 dispatchSubgoalAndWait(cnp);
16
17 order . setExecutionPrice (( Integer )(cnp.getParameterSet("result "). getValues()[0]));
18 order . setExecutionDate(new Date());
19 }

Fig. 5. The purchase book plan of the buyer

proposals have been collected and need to be rated against each other. In the
booktrading domain, the buyer agent compares the prices of the proposals to
the acceptable price as given in the order from the user (lines 14-16). When
no acceptable proposal is present, the query goal automatically fails due to an
empty winners parameter set, otherwise the interaction will terminate with the
buyer accepting the cheapest proposal (due to ordering defined in line 16). In
the plans section (lines 21-28), the purchase_book_plan is defined (line 22-27),
which is triggered by the purchase_book goal (line 26). The order parameter
from the goal is mapped to a plan parameter (lines 23-24), while the body tag
(line 25) refers to the Java class implementing the plan.

The body of the purchase_book_plan is shown in Fig. 5. It contains two main
parts: First, it has to determine negotiation partners using a df_search subgoal
(lines 2-9). In a second step a parallel negotiation with all suitable sellers is
performed represented by the cnp_initiate subgoal (lines 11-15). When no error
occurs during the negotiation (in which case the plan would immediately fail and
exit), the result is finally stored in the Order object (lines 17-18) making the goal
succeed due to its target condition. When the goal is aborted before the plan
finishes (e.g. if the deadline passes during an ongoing interaction), the plan and
its subgoals will also be aborted, in which case the interaction is automatically
terminated using the standardized FIPA-Cancel-Meta-Protocol (cf. [12]).

5.2 Seller Agent Implementation
Domain activities of the seller are triggered by the generic goals of the proto-
cols capability, which are included as shown in Fig. 6. When a call-for-proposal
message is received, the cnp_make_proposal goal (lines 3-19) is created auto-
matically, allowing the agent to decide about making an offer. This query goal is
defined declaratively by specifying directly the out-parameter values (lines 6-18),
hence no plan is necessary to handle the goal. Instead, the current beliefs of the



1 <agent name="Seller" ...>
2 <goals>
3 <querygoal name="cnp_make_proposal">
4 <assignto ref="procap.cnp_make_proposal"/>
5 <parameter name="cfp" class="Object">...</parameter>
6 <parameter name="proposal_info" class="Object" direction="out" optional="true">
7 <value evaluationmode="dynamic">
8 select one Order $order from $beliefbase . orders
9 where $order. getTitle (). equals ($cfp) && $order.getState(). equals (Order.OPEN)

10 order by ($beliefbase . time − $order.getStartTime())
11 / ($order. getDeadline(). getTime()−$order.getStartTime())
12 </value>
13 </parameter>
14 <parameter name="proposal" class="Object" direction="out">
15 <value evaluationmode="dynamic">
16 ((Order)$goal. proposal_info). getAcceptablePrice ()
17 </value>
18 </parameter>
19 </querygoal>
20 <achievegoalref name="cnp_execute_task">
21 <concrete ref="procap.cnp_execute_task"/></achievegoalref>
22 </goals> <!−− Plans and other elements omitted for brevity. −−>
23 </agent>

Fig. 6. ADF excerpt of the seller agent

agent are checked, and if the agent currently whishes to sell the requested book
(identified by the title in line 9), the acceptable price (line 16) is returned as a
proposal. When the buyer accepts the proposal, a cnp_execute_task goal is cre-
ated to complete the transaction. This goal is handled by an execute_order_plan
(not shown), which may handle delivery and payment issues.

The example shows the clean separation of protocol execution and domain
activities, letting application developers focus on domain behavior. Moreover,
architectural concepts such as goals and plans can be used as usual also for
implementing interaction behavior. Finally, the code is more simple compared
to a functionally equivalent implementation of the booktrading scenario in JADE
as described in [2]. Although the JADE implementation uses generic classes as
well for the contract-net implementation, the buyer and seller implementations
are 30-50% larger than the corresponding Jadex implementations presented here.

6 Summary and Outlook
This paper tackles questions concerning the interaction of agents in a multi-
agent system, and focuses on the mirco level of interactions, i.e. how to describe
and implement interaction protocols from the viewpoint of single agents. Central
questions are how to derive and accurately represent the individual objectives
in the course of an interaction and how to relate interactions to the agent ar-
chitecture and to domain-specific behavior. A review of related work reveals
that existing approaches do not offer a unified domain-centric view to all these
questions, and instead mostly focus on concrete message sequences.

Based on these findings, a new approach is proposed, which brings together
an abstract BDI-centered view on domain activitities with predefined interaction



protocols. As result goal-oriented interaction protocols are derived leading to a
reduced effort for realizing agent communications. Advantages of the approach
are that interaction objectives are conserved in the implementation and a tight
integration into the internal agent architecture is achieved. Moreover, the do-
main layer is separated from the protocol layer facilitating understandability,
maintainability and reusability of code. A generic realization and an example
application have been presented, demonstrating the feasibility of the approach.
Future work can be undertaken in areas such as dynamic protocol selection or
execution. E.g., a protocol engine would allow executing abstract user defined
protocols additionally to the standardized protocols of the Protocols capability.

References
1. B. Bauer, J. Müller, and J. Odell. Agent UML: A formalism for specifying multia-

gent software systems. International Journal of Software Engineering and Knowl-
edge Engineering, 11(3):207–230, 2001.

2. F. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent systems with
JADE. John Wiley & Sons, 2007.

3. R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni. Multi-Agent Pro-
gramming: Languages, Platforms and Applications. Springer, 2005.

4. M. Bratman. Intention, Plans, and Practical Reason. Harvard Press, 1987.
5. L. Braubach, A. Pokahr, and W. Lamersdorf. Extending the Capability Concept

for Flexible BDI Agent Modularization. In 3rd Int. Workshop on Programming
Multiagent Systems (ProMAS 2005), pages 139–155. Springer, 2006.

6. L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Representation for
BDI Agent Systems. In 2nd Int. Workshop on Programming Multiagent Systems
(ProMAS 2004), pages 44–65. Springer, 2005.

7. L. Cabac and D. Moldt. Formal semantics for AUML agent interaction protocol
diagrams. In Agent-Oriented Software Engineering (AOSE 2004), p. 47–61, 2005.

8. C. Cheong and M. Winikoff. Hermes: Designing goal-oriented agent interactions.
In Agent-Oriented Software Engineering (AOSE 2005). Springer, 2005.

9. M. Dinkloh and J. Nimis. A tool for integrated design and implementation of
conversations in multiagent systems. In 1st Int. Workshop on Programming Multi-
Agent Systems (ProMAS 2003), pages 187–200. Springer, 2004.

10. L. Ehrler and S. Cranefield. Executing agent UML diagrams. In Autonomous
Agents and Multi-Agent Systems (AAMAS 2004), pages 906–913. IEEE, 2004.

11. J. Ferber. Multi-Agents Systems - An Introduction to Distributed Artificial Intel-
ligence. Addison-Wesley, 1999.

12. Foundation for Intelligent Physical Agents (FIPA). FIPA Contract Net Interaction
Protocol Specification, December 2002. Document no. FIPA00029.

13. P. Giorgini, M. Kolp, J. Mylopoulos, and M. Pistore. The Tropos Methodology.
In Methodologies and Software Engineering for Agent Systems. Kluwer, 2004.

14. J. McCarthy. Ascribing mental qualities to machines. In Philosophical Perspectives
in Artificial Intelligence, pages 161–195. Humanities Press, 1979.

15. A. Pokahr, L. Braubach, and W.Lamersdorf. Jadex: A BDI Reasoning Engine. [3].
16. C. Rooney, R. Collier, G. O’Hare. Viper: A visual protocol editor. In Coordination

Models and Languages (Coordination 2004), pages 279–293. Springer, 2004.
17. A. Scheibe. Ausführungsumgebung für FIPA Interaktionsprotokolle am Beispiel

von Jadex. Diplomarbeit, University of Hamburg, 2003. (in German).



18. A. van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour. In
Requirements Engineering (RE 2001), pages 249–263. IEEE Press, 2001.

19. Whitestein Technologies. Semantic Communication User Manual, LS/TS Release
2.0.0 edition, 2006.

20. M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, 2001.


