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Abstract: The problem of patient scheduling in hospitals is 
characterized by high uncertainty and dynamics in patient 
treatments. Additional complexity in the planning and 
coordination processes is caused due to interdependencies of 
autonomous and administratively distinct units which are 
involved in the treatment of a patient. For real-world 
scheduling scenarios traditional scheduling methods are often 
either too limited in their expressive power regarding the 
representation of real-world problems or fail in solving 
real-sized problems in a timely fashion. In contrast, 
multi-agent systems are a promising approach to overcome 
these restrictions. This paper extends previous evaluations a 
multi-agent system for patient scheduling and studies a 
close-to-reality testing environment. The scenario is based on 
a field study and includes the interplay of multiple sources of 
uncertainty to evaluate the applicability of our approach in 
practice. The experimental results show that the evaluated 
multi-agent system outperforms existing status quo 
approaches for patient scheduling in hospitals. 
Keywords: collaborative business processes, service-oriented 
architectures, agent technologies. 

1. Introduction

Hospitals are service providers with the primary aim to 
improve the health state of their patients, where the treatment 
of the patients is the main value-adding-process in hospitals 
[7][11]. Hospitals consist of several autonomous, 
administratively distinct wards and ancillary units [5][16][22]. 
During hospitalization, the patients reside at the wards and 
visit the ancillary units for treatments according to their 
individual disease. The patient scheduling is concerned with 
the (optimal) assignment of medical tasks for the patients to 
the (scarce) hospital resources [30]. However, hospital patient 
scheduling is confronted with such a high degree of 
uncertainty that Schlüchtermann and Gierl [9][30] assess a 
short-time planning horizon of only one day whereas, for 
manufacturing control, Wöhe [34] assumes a short-time 
planning horizon of one to two weeks. In hospital patient 
scheduling, the patients arrive continuously at the hospital and 
the necessary medical treatments are often not completely 
determined at the beginning of the treatment process. 
Moreover, the new findings during diagnostic examinations 
change the (medical) priority of the patients, invoke additional 
treatments or examinations, or make other medical actions 

obsolete [22]. Furthermore, the durations of treatments and 
examinations are stochastic [1][23][29]. Finally, 
complications and arrivals of emergency patients which are in 
urgent need for treatment result in schedule disturbances. 
Because the ancillary units only have a local view and can not 
consider the complete pathway of the patients, no inter-unit 
process optimization is possible (i.e., the medical tasks for the 
patients cannot be scheduled and coordinated in an efficient 
manner). This causes undesired idle times as well as overtime 
hours for the hospital resources and extended patient stay 
times.  

Concerning such real-world scheduling problems, classical 
AI and OR-based methods are often either too limited in 
expressive power regarding the representation of real world 
problems or lead to intractable problems with formalisms 
failing to solve real-sized problems in a timely fashion 
[10][31][32]. These approaches lack properties like flexibility, 
adaptivity, and reactivity, being based on methods that neglect 
dynamic changes and disturbances during a fixed planning 
period.  

Multi-agent systems (MAS) are a promising approach to 
overcome such restrictions by providing properties like 
autonomy, reactivity and proactivity [15][35]. MAS are 
supposed to be suitable for real-world problems that have a 
special need for flexibility and adaptivity to dynamic changes 
and that have a decentralized planning structure. Meanwhile, 
different multi-agent systems have been designed that address 
problems of dynamic environments and disturbances in 
scheduling problems.  

Liu and Sycara [18] developed a MAS to solve job-shop 
scheduling problems, requiring real-time scheduling and 
execution. They decomposed the job-shop scheduling problem 
and distributed it on job-agents and resource-agents where 
each agent solves its sub-task. The coordination of the partial 
solutions is provided by constraint partition & coordinated 
reaction. Each agent communicates its results to affected 
agents and reacts to violations of restrictions.  

Brennan and O [3] modeled a manufacturing system with 
job agents, machine agents, station agents (responsible for a 
workstation containing several homogeneous machines), and a 
mediator agent which, similar to a yellow page agent, provides 
information on which resource can perform a particular type of 
operation. Four different coordination strategies, based on the 
contract-net protocol and on auction-based bidding, are tested. 
The change in solution quality is evaluated while increasing 
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the number of jobs to be scheduled.  
Lee et al. [17] considered agent societies of different 

structure and compared the performance of a hierarchical and 
a mesh structure with different coordination protocols. The 
MAS has to perform a task where all agents must work 
together in order to achieve it. The task can be split up into 
several smaller subtasks, for which each agent can bid for. The 
paper studies the changes in computational time when 
increasing the number of tasks or number of agents.  

Huang et al. [14] designed a MAS for distributed medical 
care, facing challenges regarding the distribution of data and 
control, information uncertainty, and environment dynamism. 
The coordination mechanism is based on commitments and 
conventions between different types of agents. The task 
allocation and coordination is done by managing agents that 
manage the execution of tasks and by contractor agents that 
execute the task.  

Decker and Li [4][5] modeled a MAS for hospital patient 
scheduling with complex medical procedures. They took a 
function-centered view and modeled nursing wards as 
autonomous agents. They developed a generalized partial 
global planning (GPGP) approach as a constraint-based 
coordination mechanism. It is constructed to avoid resource 
conflicts and patients are treated as exclusive resources that 
are handled by a special mechanism.  

To evaluate the developed MAS, in many cases feasibility 
proofs or proofs of concepts were performed addressing 
aspects like scaling problem size, uncertainty, or the dynamics 
of the domain. However, especially for hospital patient 
scheduling, the question is important whether these MAS 
approaches can be successfully applied in real-world 
applications, where several aspects of uncertainty and 
dynamic environments occur together. Therefore, further 
evaluation studies have to be done, examining the applicability 
of the developed coordination mechanisms and MAS 
architectures in uncertain and real-world scenarios.  

Important for evaluation studies is the selection of adequate 
test problems [13], as there is a trade-off between abstract, 
simplified testbeds, and testbeds that are close to real-world 
environments. For abstract testbeds it is easier to generate 
generalizable results. However, obtained conclusions often do 
not hold for real-world problems. Therefore, only testbeds that 
are close to reality allow meaningful conclusions on the 
applicability of such approaches in real-world applications 
[12]. For the existing standard benchmarks, Hanks et al. [12] 
identified the problem that scientific progress may only focus 
on the ability to better solve these abstract benchmarks instead 
of bringing progress for real problems.  

It is the aim of this paper to perform a close-to-reality 
evaluation of the MAS proposed by Paulussen et al. [21][22] 
which has been developed for hospital patient scheduling. The 
evaluation will be conducted in a simulation study that is 
based on empirical data from a field study on patient 
scheduling in a German hospital.  

The paper is structured as follows. Section 2 describes the 
design of the MAS proposed by Paulussen et al. [21][22]. We 
review the underlying coordination mechanism and the 
implementation of the MAS. Section 3 provides the test 
scenario that was developed based on the data of our field 
study. Finally, in Section 4, the MAS approach is tested 
against the status quo of planning and the experimental results 
are presented.  

2. Conceptual Framework and Implementation  

2.1 Conceptual Framework  

The multi-agent system of Paulussen et al. [21] represents 
patients and ancillary units as patient-agents and 
resource-agents. The patient-agents compete for treatment 
appointments as scarce resources in a fictitious market place. 
For that purpose the resource-agents auction off the time-slots 
corresponding to their capacity. Consequently, if a resource 
gets free, its next time-slot is assigned to the patient-agent with 
the highest bid. Each treatment represents a utility for an agent 
by improving his health state or avoiding a worsening. Thus, 
based on an individual worth-function each patient agent 
determines the benefit of a treatment as the price, it is willing 
to pay for it. The rationality behind this approach is that the 
patient-agent who gains the highest utility from a specific 
time-slot is willing to pay the highest price for it (up to the 
expected utility). To specify these individual worth functions 
of patient-agents, health state dependent cost functions are 
introduced, as the priority of the patients is determined by their 
health condition. In doing so the illness of a patient is viewed 
as dis-utility (decrease in quality of life) [22]. For the 
necessary cardinal measurement of health, Paulussen et al. use 
the concept of years of well being [24][33],which allows to 
describe the health state progress over time. Because the loss 
of utility adds up as long as the illness is not cured, this 
dis-utility is interpreted as opportunity costs for not curing the 
disease right away [22]. Moreover, the health state of a patient 
can either remain constant or can decrease over time. 
Therefore, a health decrease rate is included in the worth 
function of a patient that defines the stability of a health state.  

2.2 Implementation

The prototype implementation is organized in three separate 
layers: The coordination layer, the hospital layer, and the 
infrastructure layer [21]. The coordination layer is comprised 
of the different coordination mechanisms, each of which can 
be applied to perform the treatment scheduling. The 
coordination mechanism has been designed and implemented 
using agent-oriented tools and concepts. More details about 
the implementation of the coordination mechanisms can be 
found in [2][23]. The hospital layer is designed to support the 
execution of the coordination by providing the facilities to 
perform simulation runs or to run the system as an application. 
When a simulation run is initiated, the information from the 
hospital model is used to create the hospital infrastructure 
consisting of initial patient and resource agents. During the run, 
the system agent uses different random distributions to 
approximate real arrival rates of patients and other 
occurrences like emergencies. Using this information, the 
system can decide when the next arrival or emergency will 
take place. The system agent is conceived to emulate all 
simulation external occurrences. Hence, for running the 
system as application instead of simulation it is merely 
required to adapt the system agent to react on some user 
interface and setup the time service with real time. The 
infrastructure layer provides system-level services for the 
implementation such as agent management and execution, as 
well as persistency. Basic agent services as the agent life cycle 
management, agent communication and search facilities are 
provided by a FIPA-compliant agent middleware platform 
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[26]. These basic services are enhanced with a rational agent 
layer following the BDI-metaphor [28] which enables the use 
of goal-oriented concepts at the design and implementation 
level. Hence, it facilitates the development with the 
introduction of high-level agent-oriented programming 
concepts [25]. The persistency infrastructure consists of a 
relational database management system which is connected 
with an object-relational mapping layer. The mapping layer 
enables object-oriented access to the data by making the 
underlying relational database model transparent.  

3. Test Scenario

This section describes the test scenario that we generated 
based on a field study in a German hospital. The test scenarios 
is implemented in a simulation environment and is based on a 
data sample containing 3,448 data sets with information on 
medical tasks for 792 inpatients from admission to release.  

In continuation to the preceding evaluations of the 
multi-agent approach from Paulussen et al. that focused on 
ceteris paribus examination of certain disruptive factors [21], 
the aim of this scenario is to build a close-to-reality testing 
environment that includes the interplay of multiple sources of 
uncertainty. Thus, it allows to judge the applicability of this 
approach in practice. The following sections describe the test 
scenario in some more detail.  

3.1 General Hospital Layout  

Our testbed is characteristic for a medium-sized German 
hospital with about 500-600 inpatient beds and 12 diagnostic 
resources in five different ancillary units. There are four 
parallel diagnostic work stations for endoscopy, three for the 
circulation laboratory unit, three for X-rays, one station for 
computed tomography and magnetic resonance imaging 
(CT/MR unit), and one station for nuclear medicine. 
Altogether, these units offer about 300 different medical 
examinations and treatments. In our model, we considered 
variable processing times for the different services in the 
ancillary units that are based on the data of our field study.  

3.2 Patient Arrival  

For a standard working day, the average amount of patient 
arrivals is 80 to 90 patients per day including an emergency 
rate of 5% of all arriving patients. The patient arrivals are 
exponentially distributed over the day and a patient gets the 
first medical assignment right after his or her admission. The 
further course of the patient treatment follows the hospital 
process organization with daily ward rounds in the morning. 
This situation leads to an accumulation of assignments at the 
beginning of a day and results in a peak load the scheduling 
system has to cope with.  

3.3 Health States and Decrease Rates  

In our field study, we observed a classification of patients 
along their severity of illness and the stability of their 
constitution. We modeled this classification by using different 
health states and health decrease rates following [21]. Thus, a 
health state of 1 represents full health and a health decrease 
rate of 0 is a stable constitution, whereas a health decrease rate 
of 0.0017 characterizes an instable constitution of an 

emergency patient, indicating the need for immediate 
treatment.  

3.4 Clinical Pathways  

At first glance one might expect that patients with the same 
diagnosis merely get the same treatment and that most of the 
assignments may be predicted with a probability close to 
100%. However, the data of our field study indicates very 
inhomogeneous treatments. The probabilities of the top ten 
assignments regarding a certain diagnosis showed a median of 
36% reaching from 9% to 81% maximally. These variations 
result form the uncertainty of the diagnosis at the beginning of 
a treatment and later on from necessary patient individual 
medical tasks. Thus the amount, type, and sequence of medical 
tasks that are assigned to the patients are uncertain and each 
patients’ clinical pathway individually varies with new 
findings from previous examinations. This effect is 
represented in our simulation by iterative treatment phases [8]. 
After the admission, the patient is either in the state of 
treatment or released. After each ward round the patient turns 
to the next treatment phase again, or if treatment is completed 
he or she is released. The state transition properties depend on 
the iteration number of a patient and with increasing number 
of treatment phases the probability of a release increases. Thus, 
we model the patient treatment as a Markov process with 
history [6][27], see Fig. 1(a).  

The assignments (examinations, treatments) for a patient in 
a ward round depend on his or her current treatment phase. For 
example, the first phases are characterized by admission 
examinations to clear the patients’ diagnosis, whereas special 
curative treatments and checking examinations occur in 
phases with a higher iteration number. Thus, we refine the 
model for treatment phases in a patients’ clinical pathway, 
representing it as an extended GERT-network [19][20], see 
Fig. 1(b). The respective course of medical procedures a 
patient has to pass and the diagnostic treatments to be 
scheduled are calculated based on our empirical data.  

This concept of treatment phases allows us to consider 
variable and uncertain clinical pathways. It includes 
uncertainty from random effects in the progress of patient 
treatments which results in inherent dynamics and stochastic 
load for a hospital. For example, hospitals may experience 
capacity bottlenecks if casually a high amount of current 
inpatients turns out to need a higher intensity of care as usual.  

3.5 Simulation Runs and Target Measures  

The simulation runs were set up for 22 days and started with a 
hospital that was pre-filled with patients. The first 12 days 
were assumed as a tuning phase of the system and therefore 
were not evaluated. As target measures we evaluate the system 
performance, the resource occupation of the ancillary units, 
and the waiting times of the patients. We compare the results 
of the MAS approach from Paulussen et al. to the status quo in 
hospital patient scheduling. Because hospital patient 
scheduling is an ad hoc approach [5], patients usually do not 
get a prefixed time-slot for treatment, but rather wait in a 
queue (or in the ward unit) until they are requested by the 
ancillary unit. Thus, no scheduling data allowing a more 
detailed comparison is available. Therefore, we model the 
status quo of patient scheduling as a first-come first-serve 
(FCFS) scheduling strategy that well describes the situation in  
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Fig. 1(a). Patient treatment as Markov process. 

Fig. 1(b). GERT model of patient treatment phases. 
Fig. 1. Modeling clinical pathways in the real-world scenario. 

real world.  

4. Experimental Results

4.1 System Performance  

In all test runs, the MAS proposed by Paulussen et al. showed 
satisfactory performance for real-time demands. This holds 
even for high load situations in hospital wide ward rounds. On 
average the negotiations took 1.500 ms with a standard 
deviation 5 ms. The maximal negotiation time that occurred 
was 31.009 ms.  

4.2 Patient Waiting Times  

To evaluate the average patient waiting time, we calculate the 
time between the assignment of a medical task and its 
execution. Fig. 2 compares for ten test runs the average patient 
waiting times for the FCFS scheduling with the auction-based 
coordination approach from Paulussen et al. The 
auction-based approach permanently results in lower waiting 
times than the FCFS heuristic. On average it outperforms the 
status quo approach resulting in patient waiting times that are 
about 40% lower. The reduction is a result of the interaction 
between resource and patient agents which in opposite to the 
status quo scheduling allows a more efficient inter-unit 
coordination.  

Furthermore, we examine the distribution of patient waiting 
times over different health states. Fig. 3 shows how the 
deviation of average waiting times (in percent) depends on the 
health state of a patient. With an FCFS scheduling heuristic, 

the patient waiting times are independent from the patients 
health state and are similar to the average waiting times. In 
contrast, for the auction-based approach (including health 
state dependent cost functions) the waiting time decreases 
with lower health state of the patient. Therefore, patients with 
severe illness are treated earlier in comparison to patient with a 
high health state.  

Fig. 2. Average patient waiting times. 

Fig. 3. Deviation of average waiting time over health state. 

4.3 Resource Occupation  

The resource occupation is the opening time of the ancillary 
units. Each day, a resource opens in the morning and closes 
when all due medical tasks have been finished. Thus, a 
resource occupation of 1 means that a resource stays open for 
9h. The goal of a hospital is to perform all scheduled medical 
treatments and to minimize the opening time of a resource. Fig. 
4 compares for 10 test runs the average resource occupation of 
the auction-based MAS from Paulussen et al. to the FCFS 
planning heuristic. On average, the auction-based 
coordination shows a 13% lower resource occupation. When 
using this approach the ancillary units finish the due tasks 
earlier than in the status quo approach. This is due to lower 
resource idle times during the day and therefore leads to earlier 
closing times and less overtime for the ancillary units.  

5. Summary and Conclusions

This paper evaluates the performance of a multi-agent system 
(MAS) [21][22] for patient scheduling in a real-world scenario. 
For the evaluation, we performed a field study and developed, 
based on the empirical data gathered in the field study, a 
realistic simulation model of a medium-sized hospital. When 
comparing the MAS approach proposed by Paulussen et al. 
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[21][22] to the status quo of patient scheduling in hospitals, we 
observed a good performance of the market-based MAS 
approach for the real-world scenario. First, the MAS allows 
real-time scheduling and satisfies real-time demands even in 
high-load situations which typically occur in hospital-wide 
ward rounds in the morning. Second, the quality of existing 
schedules can be improved by the decentralized marked-based 
coordination. In comparison to the current status quo in 
hospital patient scheduling, the MAS approach reduces patient 
waiting times and resource occupation. Furthermore, by 
considering the health state of the patients for scheduling, 
patients with severe diseases have on average lower waiting 
times in comparison to patients with a better health state. Thus, 
it balances patient waiting times according to health state of 
the patients and may contribute to a higher satisfaction of the 
patients.  

Fig. 4. Resource occupation times. 

Along with the test scenario, a concept of variable clinical 
pathways was developed. For the future, we are planning to 
incorporate the concept of variable clinical pathways directly 
into the patient agents. This concept can serve as a knowledge 
base for a prognosis on the further course of a patients’ 
individual treatment and thus, improve schedule quality in 
uncertain environments.  
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