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Abstract

Multi-agent systems are well suited for building large software systems. A great deal of these complex

systems includes process flows that are concerned with time or are even time-critical. The activities of these

process flows are often executed in distributed autonomous subsystems that have to be synchronized with respect

to the superordinated task execution. To be able to build such systems and test their behavior adequately, it

is often advantageous and sometimes necessary to simulate them in the run-up to their practical use. Testing

and simulation of process flows within multi-agent systems requires synchronization of the participating agents

with respect to the global simulation time. In this paper, a design proposal and a service implementation for

time management is presented, which takes care of the special requirements imposed by multi-agent settings.

This so called time service is implemented as a FIPA-compliant agent, and can be used to couple heterogeneous

subsystems implemented on different agent platforms.
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1 Introduction

Complex enterprise software systems consist of several more or less tightly coupled subsystems that are organized

in a hierarchical fashion (i.e., the various subsystems contain other subsystems). It is argued that multi-agent

systems (MAS) are well suited to reduce the complexity of building such software systems (Jennings 2001) .

MAS are able to capture the structure and hierarchical organization, as each subsystem can be represented by an

autonomous agent, which may itself be a multi-agent system containing other agents. Two of these “multi-multi

agent systems” (MMAS) are developed in the Agent.Enterprise and Agent.Hospital initiatives of the German

priority research programme DFG-SPP-1083 “Intelligent Agents in Real-World Business Applications”. 1

A problem when developing large-scale systems is to coordinate the timely execution of activities inside the

single subsystems, as well as activities which require coordination between different subsystems. This is even

more true for agent-based systems, which highly emphasize the autonomy of the individual components. Only

carefully elaborated design and extensive testing induces successful operation under all conditions. To solve this

problem and to test the developed systems, it is useful to simulate them in the run-up to their practical use (Lees

et al. 2004) .

The main problem addressed in this paper is the coupling and synchronization of independently developed

agent systems for testing and simulation purposes. It is argued that existing approaches and tools for time man-

agement cannot be easily adapted to the special requirements imposed by the Agent.Hospital and Agent.Enterprise

settings. As a solution, a standards-compliant middleware time servicecomponent is proposed, which allows con-

trolling the execution of process-flows in the distributed MAS. The design and implementation of the time service

is based on techniques from the field of simulation.

In the next section, the foundations of simulation in general and multi-agent based simulation in particular are

described. Thereafter, the context of this work is presented in section 3. In section 4, the design and implementa-

tion of the time service with respect to the special requirements of multi-agent systems is described. An example

of how the time service is applied in a real-world scenario is given in section 5. In section 6, some related work is

presented and finally, in section 7, some concluding remarks are given.

2 Background

A central concept of simulation is time, which can have different meanings according to the context it is used

in. To avoid confusion the notions of wallclock and simulation time are introduced. The so called wallclock time

refers to the perceived execution time while the system is running, which could e.g. be measured by a physical

clock. In contrast the simulation(also called virtual or logical) timedescribes the software representation of time

that reproduces the relevant timing aspects of the problem domain (Fujimoto 1998) .

An important aspect of simulation environments is time management, which enforces the temporal charac-

1http://www.realagents.org
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teristics of the problem domain to be correctly reproduced in the simulation. This is necessary because e.g. the

delays in the real world depend on quantities such as the speed of light whereas in the simulation world other

characteristics independent of the problem domain, such as network speed have to be taken into account. Omit-

ting time management, the order of messages cannot be ensured and simulation runs with the same initial settings

could produce entirely different results. Time management can be accomplished by a number of different time

management mechanisms which guarantee the timely correct delivery of events and therefore lead to consistent

repeatable simulation runs (Fujimoto 1998) .

2.1 Multi-Agent Based Simulation

The multi-agent based simulation (MABS) differs from conventional simulation in that the entities constituting

the system are agents. The topic is influenced by existing research areas such as parallel and distributed discrete

event simulation(Fujimoto 1999) and object oriented simulation(OOS) (Page 1991) . Below, some basic ideas

of these subjects are discussed, for a detailed survey about MABS see (Davidsson 2000) . In this contribution,

unlike traditional distributed simulation, distribution is not introduced to increase the performance of simulation.

Rather, simulation is used as a technique to test an inherently distributed system. However, the applied concepts

are the same.

In discrete event simulation (DES) it is assumed that state changes in the world occur at distinct points in

time and are caused by events. It can be seen as the counterpart to continuous simulation where state changes

occur continuously over time. DES can be further subdivided into event-driven and time-driven approaches.

Event-driven approaches utilize an ordered event list where time stamped events are stored. Progress is achieved

by removing the earliest entry from this list, advancing the simulation time to the timestamp of that event and

executing the event. This may lead to further entries of new events in the event list. Time driven approaches

advance the time in constant time steps. In each step the clock is adjusted and the participants are informed about

the new time. They now can check, if an activity has to be executed at this point in time.

Very interesting with respect to MABS is the distributed discrete event simulation, because the basic entities

in distributed simulation, called logical processes (LP), represent active objects with a control flow of their own.

They are therefore to some extent comparable to autonomous agents. In synchronousprocess simulation, a cen-

tralized or decentralized global clock is used to coordinate the LPs. All processes of the same simulated system

share the same simulation time. This simulation time is set to a predefined value at the beginning of the simulation

run and is only advanced during the simulation proceeds. At each point in time defined by a process, it gains the

possibility to execute. This can include further communication with other processes that were not activated for

this simulation time. On the contrary asynchronousprocess simulation allows the presence of events occurring

at different simulated times that do not affect one another. The problem that is associated with asynchronous LP

simulation is the chance of causality errors. Approaches that allow the advancement of time even though causality

errors may happen are called optimistic in contrast to conservativemethods executing only conflict free events
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at any point in time. Anyhow, the techniques from distributed simulation cannot be used without adaptation to

the special requirements of MABS, e.g., Theodoropoulos and Logan say “[...] conventional distributed simulation

techniques cannot easily be applied to the problem of modeling the interaction of a system of autonomous compo-

nents” (Theodoropoulos and Logan 1999, p. 1) . Ferscha provides an excellent overview of distributed simulation

mechanisms (Ferscha and Chiola 1994) .

In OOS the participating entities are objects and for reasons of simplicity it is in many cases sufficient to have

a single control flow in the simulation system. Considering these characteristics it becomes comprehensible that

utilizing simple non-distributed DES methods for OO simulation is adequate. Besides this important difference

some further conspicuous distinctions to OOS can be noticed when analyzing the protagonists. Agents are au-

tonomous, pro-active acting entities that use message passing as communication paradigm and are modeled in

terms of mentalistic attributes whereas objects are purely reactive, use method invocation and are modeled in

terms of attributes and methods.

After having argued why agent-based simulation is important and which different paradigms form the basis of

MABS, the context of this paper is presented.

3 The Agent.Enterprise and Agent.Hospital Scenarios

The German priority research programme SPP 1083 is focused on research in the field of agent technology for

business applications. Two domains are covered by the participating projects: Manufacturing logistics and hospital

logistics. Initially the projects have developed stand-alone prototype multi-agent systems focusing on different

problems in the field of supply chain management and hospital logistics respectively. In the last year two initiatives

have been formed to bring together the results of the single projects and integrate the developed prototypes for the

creation of large-scale distributed systems. The Agent.Enterprise (Frey et al. 2003) and Agent.Hospital (Kirn

et al. 2003) initiatives make up the motivation for the work on MMAS. Two scenarios have been developed to

integrate the independent projects into two superordinated systems using generalized process flows.

The Agent.Enterprise scenario is an inter-enterprise multi-level supply-chain scenario. Currently, five research

projects are involved in the development of Agent.Enterprise. Two of these research projects focus on supply chain

aspects: SCM scheduling as well as tracking and tracing of supply chains. Three projects deal with application

of agent technology in the participating enterprises of the supply chain with a special focus on integration of

process planning, reliability and robustness, and batch production of semiconductors. Necessary processes in

supply chains were analyzed and modeled. Additionally, the interfaces between involved systems were designed.

In the context of the hospital logistics working group with six participating projects an extensive empirical

funded model called Agent.Hospital is being developed. This model is an open framework with numerous differ-

ent healthcare actors and consists of detailed partial models of the healthcare domain. It enables the examination

of modeling methods, configuration problems as well as agent-based negotiation strategies and coordination algo-
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Figure 1: Coupling of MAS using gateway agents, adapted from (Krempels et al. 2003)

rithms. The working group also deals with the integration of different partial hospital logistics models created by

the participating projects. One important step for the integration was the definition of numerous different gateways

between all these models and the merge into a conceptual overall scenario consisting of the basic process flows.

Relevant organizational structures, processes and necessary data models were analyzed, formalized and modeled

at several hospitals.

To establish the connection between the different prototypes of the two scenarios, each involved MAS has a

gateway agent which is able to communicate with agents of its own MAS as well as other gateway agents within

the Agent.Enterprise or Agent.Hospital scenario (see Fig. 1). Communication between gateway agents is based

on standard FIPA protocols. While a common supply chain ontology tailored for the Agent.Enterprise scenario

has been developed, the Agent.Hospital scenario currently uses different ontologies for communication between

different MAS.

Since the systems reside on agents platforms all across Germany, Agent.Enterprise and Agent.Hospital utilize

the Agentcities2 infrastructure to publish and locate the services provided by the different subprojects. Current

developments are dealing with enhancements in synchronization of distributed MAS and interfaces to further MAS

in order to make Agent.Enterprise and Agent.Hospital open platforms, e.g., to test MAS in manufacturing or MAS

in healthcare as part of the Agentcities network. It is important to point out, that it was and still is an essential

development goal of Agent.Enterprise and Agent.Hospital, to support an open and extensible agent-infrastructure

for the manufacturing and healthcare domain.

4 Realization of a Middleware Time Service Component

In this section the requirements, design and implementation of the synchronization mechanism for the distributed

architecture of Agent.Hospital and Agent.Enterprise are presented.

2http://www.agentcities.net
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4.1 Requirements

From the Agent.Enterprise and Agent.Hospital scenarios and the agent paradigm itself, a number of general re-

quirements of MABS regarding large-scale agent systems can be derived.

Standardized Interactions The participants of the simulation are not necessarily agents developed to run on the

same agent platform. Different subprojects will have to decide in their own responsibility what agent plat-

form is best suited for their needs. Therefore, the communication among the participants and the simulation

system has to be standardized in some way with the different agent platforms.

Efficient Execution The subsystems deal with different cut outs of the superordinated system resulting in events

irregularly distributed over time. E.g., in the Agent.Hospital scenario some systems optimize intra-day

schedules, while others deal with weekly work plans. The simulation should be able to handle this diver-

gency effectively.

Easy Integration It should be possible to adapt existing systems to the simulation with little effort. In the Agent.X

scenarios a lot of implementation work already had been done, before the initiatives decided to couple the

MAS of the independent subprojects.

Robustness The time management mechanism should be as robust as possible with respect to a dynamic environ-

ment. Therefore, communication failures and the breakdown of single agents should not affect the system

as a whole.

Scalability The number of time clients that need to be synchronized may vary and the time management mecha-

nism should not degrade inadequately for a large number of participants.

Flexibility Participating agents may be newly created and destroyed. Therefore, the number of participants in the

synchronization mechanism may change dynamically. When a new agent is created, the synchronization

mechanism will not know about its existence, before it has announced its interest in taking part in the

synchronization. It has to be made sure, that subsequent activities are not triggered, until all interested

parties have been given opportunity to appropriately announce their scheduled activities.

Agent Autonomy (a) The system must not restrict the agents to only a single task. Inside each agent there may

be a number of parallel executing tasks (e.g. concurrent negotiations with different agents). Each task may

independently require synchronization with other agents. Therefore, an agent may require a separate time

point for each of its tasks. The mechanism has to provide ways for an agent to announce its interest in more

than a single event, and take care of routing wake-up calls to the corresponding agent tasks. (b) Agents

may autonomously want to revise former made decisions due the newly received information or due to their

own cognition processes. With respect to the time management this means that a time client must have the

option to change its next wakeup time.
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Figure 2: Time Service Protocol

4.2 Design

Some of the above mentioned requirements are met by process-oriented simulation, using a global list of time

points for scheduled activities. In synchronous process-oriented simulation, the processes (agent tasks in this

case) send to the coordinator a Passivatemessage to indicate that they have no scheduled activities, or a Hold(t)

message with the time of the next activity that needs to be scheduled. These messages tell the coordinator, that the

process has finished its actual activity and the next activity can be scheduled. Therefore, the coordinator iteratively

removes the next entry from this list, advances the clock, and informs the corresponding process that the time point

is reached. Then the coordinator will wait, until that process has answered again.

The coordinator managing the global list of time points can be implemented as an autonomous agent and

therefore fits naturally into the MAS world. While the drawback of a synchronous approach is maybe less effi-

cient, it “considerably simplifies the implementation of correct simulations by avoiding problems of deadlock and

possibly overwhelming message traffic” (Ferscha and Chiola 1994) . To respect the autonomy of the individual

agents, the traditional coordinator design has to be extended to accept messages from any agent or process at any

time, because the continuation of the simulation may not only depend on the agent that received the last wakeup

call.

An AUML diagram of the time service interaction protocol is depicted in Fig. 2. The four different interaction

possibilities are denoted by the characters a to d. In the initialization phase (a), agents (more precisely agent tasks)
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may Registerand will receive an agreemessage, if they are not already registered. When a participant terminates

(e.g. when a patient leaves the hospital) it requests a Deregister(d), receiving a refuseif the participant was not

registered. The other two interactions (b and c) may happen repeatedly during simulation runs. The conversation

id field provided by FIPA-ACL can be used at the client side to identify the receiving agent task for a coordinator

message, when an agent has more than one task that requires synchronization.

When the simulation run is started, the initial time (Now) is sent to all participants (b). New participants that

register while the simulation is running will immediately receive the Now message with the current simulation

time. While the simulation is running a participant will continuously get these so called wake-up calls whenever its

registered point in time is reached. The participant is now supposed to execute its current activity and subsequently

sends back a message when it is finished. To avoid causality errors, the time-advancement is blocked while the

activity is executed. Either the process announces the point in time (t) for its next activity by submitting a Hold(t)

request, or it currently has no activities to be scheduled and therefore submits a Passivaterequest. For robustness

reasons the simulation continues with the next event, if the participant does not answer in a pre-defined timeout

period.

While executing a timed activity, only the sending of new wake-up calls is blocked. Waiting processes may

still react to messages received from other agents or the waiting agent may change its mind due to other internal

deliberation processes (c). New information that affects the waiting process may lead to new activities in this

process and a new activation time. Therefore, the triggered process can decide to activate itself with respect to the

global time by sending a Blockrequest to the time service. The service removes the time entry of the process and

acknowledges this by sending an agreemessage. The coordinator has to wait until all active processes declare that

they are finished by sending a Passivateor Hold(t) request. It is noteworthy that this design differs considerably

from the ordinary process oriented simulation where it only depends on the initially activated process when the

coordinator may advance the time. A subsequently triggered process would have to notify the calling process

when it has finished its activities. This would have to be done in a nested way, when the triggered process sends

messages to further processes. In an agent scenario this traditional kind of design is undesirable, because it violates

the agent’s autonomy concept and leads to awkward interaction protocols that resemble method calls.

In addition to the interaction protocol the time service implements an administrative interface with commands

that can be submitted via the FIPA-Request interaction protocol (Foundation for Intelligent Physical Agents 2002)

. The simulation is initialized with the Init command by providing the start time. It is then started with the Start

command or alternatively in single-step or slow-motion mode with the Stepor Slowcommands, where for slow-

motion an optional speed argument can be supplied. During the execution, the simulation can be paused with the

Pausecommand or switched to single-step or slow-motion mode. The Continuecommand puts it back to normal

mode. The simulation is terminated by the Stopcommand. The Pauseand Stopcommands accept an optional

argument indicating the simulation time at which the command should take effect. Otherwise the commands are

executed immediately.
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<goals>

<achievegoal name="ts_register">
<parameter name="participant" class="String"/>
<parameter name="timeservice" class="AID" optional="true"/>
<parameter name="leasetime" class="Duration" optional="true"/>

</achievegoal>

<achievegoal name="ts_hold">
<parameter name="participant" class="String"/>
<parameter name="nexttime" class="AbsoluteTimepoint"/>

</achievegoal>

<achievegoal name="ts_passivate">
<parameter name="participant" class="String"/>

</achievegoal>

<achievegoal name="ts_block">
<parameter name="participant" class="String"/>

</achievegoal>

</goals>

Figure 3: Client Goals (digest)

4.3 Implementation

For the communication between the time service and the participating processes, a so called TimeService ontology

has been conceived, which contains on the one hand information about the agent actions, what an agent wants

another agent to perform, and on the other hand the domain concepts. The agent actions correspond to the above

explained client requests and administrative commands and the modeled domain concepts describe things like

dates and points in time. The ontology was defined in the ontology modeling tool Protégé (Grosso et al. 1999) .

The time service has been implemented as a FIPA-compliant agent using the JADE agent framework (Bel-

lifemine et al. 1999) and the BDI-extension Jadex (Pokahr et al. 2003) . JavaBeans, used in JADE to construct

the ACL-message contents, have been generated directly from the ontology using a code generator tool (van Aart

et al. 2002) . For time service clients (agent tasks) a generic pluggable agent module has been implemented, that

handles the communication with the time service. This client module provides among other things several typed

goals (see Fig. 3) that can be used to easily initiate actions with the time service. These actions correspond to the

needed client tasks taken from the time service protocol such as register, hold, passivate and block. To use the time

service functionality a client only has to instantiate such a goal, provide it with the needed parameters, dispatch it

to the BDI-system and wait for the result.

As the service is FIPA-compliant, non-JADE agents can also participate in the simulation as long as they

conform to the FIPA standard (Dale and Mamdani 2001) . To simplify the usage of the time service a graphical

user interface has been developed (see Fig. 4). This interface allows the service to be monitored and controlled

manually. The list of participants with current activation points is displayed at the left hand side. Below, the

executed service commands are shown. The icons allow issuing commands to the time service (from left to right:

slow, stop, start, pause, step). At the right hand side is a visual representation of the global time history (with the
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Figure 4: Time Service GUI

most recent time point at the bottom). The user interface proved very useful for testing and debugging purposes.

5 Example

To facilitate the coordination of the over-all process flows of the Agent.Enterprise and Agent.Hospital scenarios,

the time service based synchronization has to be integrated into the interaction between gateway agents, as well

as into the different subprojects themselves. The usage of the time service will be explained exemplarily in

the context of the MedPAge (Paulussen et al. 2003; Paulussen et al. 2004) project. It is a subproject of the

Agent.Hospital scenario and addresses primarily the creation of treatment and examination schedules for patients.

These schedules are based on clinical pathways (Dept of Veteran’s Affairs, Australia 2000) and are derived

through autonomous negotiations between patient and resource agents. The project’s objective is to evaluate

different coordination mechanisms like e.g., MedPaCo (Paulussen et al. 2003) and compare them with one

another and especially with the scheduling technique that is currently applied in most hospitals and subsequently

referred to as status-quo. For evaluation purposes, in the Agent.Hospital scenario a hospital model was realized

using the SeSAm simulation toolkit (Klügl and Puppe 1998) . This model is used as an input source to generate

the external events of the simulation such as admissions of new patients and requests for treatments.

The status-quo technique will be explained in detail here. Patients who need examinations or treatments

request appointments from the corresponding functional hospital units. The units decide in their own responsibility
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Figure 5: Status-quo protocol

what patient will get the next free slot and will be served. After the decision is made the corresponding patient

will be called to the functional unit. It may occur that the patient is unable to keep the appointment due to e.g.,

another ongoing treatment. In this case the functional unit keeps the patients reservation and tries to schedule

another patient first.

Fig. 5 shows the AUML-interaction protocol (Odell et al. 2000) between patient and resource agents. The

authors extended the description slightly to support protocol timing aspects. Hatched bars are introduced to

indicate that the participant is performing some action and has forbidden the time service to advance the simulation

time during the covered interaction, while a horizontal dashed line denotes that the simulation time has advanced.

The interaction starts with a patients MakeReservationrequest that can be accepted or refused by the resource.

Having received the resources answer, when no other reservation can be made the patient passivates itself, thereby

unblocking the time service, and awaits a ComeToResourcerequest. The resource blocks the time service after

having received the MakeReservationrequest and checks its internal state to decide whether it is not busy and can

send for the patient. This will be done by sending the ComeToResourcerequest whereupon the patient can agree or

refuse. In the case the patient refuses, the call will be repeated later. In the other case the resource waits while the

treatment goes on, by sending a Hold(t) message to the time service. The time service is now neither blocked from

the patients nor from the resources side and gets its clock ahead. It wakes up the resource with a time message

whereupon the resource notifies the patient about the finished treatment and awaits an acknowledgement before it

may unblock the time service. The patient blocks the service before confirming to the resource and has now the

possibility to make further reservations at the current simulation time, by interacting with other resources.

This technique is further clarified by an example interaction between two patients called A and B and one

resource. It is assumed that these three participants (A, B and resource 1) are registered by the time service, and

that the time service has just started the simulation at 9 o’clock (Fig. 6). Patients A and B request a reservation at

resource 1, which agrees to both requests and sends a Hold message with 10 o’clock to the time service as this
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is the desired start time of both treatments. The patients have no more activities to perform, and send a Passivate

message to the service. The time service adds this new information to its participants list as displayed in the

component. At 10 o’clock the time service wakes up the resource with a Nowmessage (see Fig. 7). The resource

sends for patient A and the patient accepts due to no other obligations. Knowing that the treatments duration is

estimated by one hour, the resource sends 11 o’clock as next wakeup time to the service. At 11 o’clock (see Fig. 8),

the resource informs patient A that the treatment is finished. The patient blocks the time service (cf. Fig. 2c) in

order to negotiate for some other appointments at the current time, and answers the resource with a mandatory

Readymessage. The resource sends for patient B, that refuses to come to the resource, because of an ongoing

treatment at another resource. The refusal includes the time 12:00 to let the resource know when the patient is

available again. After having finished its negotiations (not shown here) patient A unblocks the time service with a

Passivatemessage.

The example presented above has been applied to a hospital model derived from field studies, which is com-

prised of six functional units. During simulation runs, resource agents always synchronize their activities. Patient

agents only need to synchronize when they are actively negotiating. It has to be noted, that in the example usu-

ally only a few concurrent negotiations will happen at each single point in time, because for any event only one

agent will receive a wakeup call from the coordinator. Most of the agents will just wait until their next time point

is reached. Nevertheless, a first scalability analysis on a using a profiler tool shows that even when creating a

number of patients at once (e.g. 50), which instantly engage in concurrent negotiations, the synchronization cost

does not increase significantly but remains approximately at 5-10% of the overall execution time. The tests where

performed on a single computer system, therefore it still has to be tested how much communication from different

nodes the service can handle, before it becomes a bottleneck.

6 Related Work

The related work concerning multi-agent based simulations can coarsely be categorized into two distinct research

areas. Agent-based simulation systemsuse agents as components within a simulation and provide the necessary

framework for executing in-the-box experiments. On the contrary, simulation middlewareprovides the utilities to

control the execution of MAS with respect to temporal constraints from the problem domain. Therefore, simula-

tion middleware employs time management mechanisms for assuring time consistency in MAS.

6.1 Agent-Based Simulation Systems

Simulation systems are generally used to conduct experiments with a world model that reproduces a relevant

cutout of the real world. Experiments are meant for either prediction or explanation purposes and are based on

the (statistically evaluated) simulation results. In the following some typical representatives of simulation systems

will be presented with respect to their primary application area (microscopic vs. macroscopic perspective).
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Figure 6: Two patients request a reservation

Figure 7: The resource calls patients A

Figure 8: The resource informs patient A and requests patient B
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At the microscopic level simulation systems are utilized to evaluate artificial intelligence aspects of the agent

internal cognition processes. E.g., James (Uhrmacher and Schattenberg 1998) is a Java-based simulation tool

designed with the objective to support the flexible construction of experimental frames for multi-agent systems.

The system was hitherto especially used to compare different planning strategies on the premise that the agents

planning time is tracked by the system (Schattenberg and Uhrmacher 2001) . Another simulation framework is

MPADES (Riley 2003) which is a hybrid system: Discrete events are used for the agent’s interactions with the

world, while the underlying world model is assumed to be continuous. The system focuses on the consideration

of latencies for the agent’s internal sense, think, and act processes. It is independent from a definite world model,

agent architecture and programming language. Its objective is similar to the more basic MESS system (Anderson

1997) , which tracks the computation of agents at the level of LISP instructions.

At the macroscopic level simulation systems are used to investigate facets of collective and emergent behavior

of agent groups. They allow the simulation of complex societies, e.g., for biological, economical or sociological

experiments. For example SeSAm (Klügl 2001) is a Java-based simulation system that is intended to be useable

by domain experts and was primarily used for biological experiments. It offers a graphical programming language

which allows the definition of agent behaviors in a graphical UML-statechart (Object Modeling Group 2001)

like fashion. Another well-known system is RePast (Collier 2001) which is originally based on Swarm (Swarm

Development Group 2000) and aims to support the modeling of organizations and institutions as recursive social

constructions. In contrast to SeSAm, RePast is a framework approach and addresses mainly software engineers as

intended users.

Considering the multitude of agent-based simulation systems one can state that these frameworks offer various

mechanisms for simulating in an event-based and time-driven manner. So why can’t we take one of the above

mentioned systems to easily synchronize agent actions in a given multi-agent system? One reason for this is that

agent simulation systems are closed systems and are not intended to be used as part of an application. Therefore

they do not offer standardized interfaces for using specific functionalities like their time management. Another

important point concerns the kind of agents that are represented within a simulation system. These agents do

not employ the agent concept at the implementation level, which means that agents in simulation systems have

some characteristics making them different from software agents inhabiting agent platforms. Drogoul et al. say in

(Drogoul et al. 2002) “... [simulated] agents nowadays constitute a convenient model for representing autonomous

entities, but they are not themselves autonomous in the resulting implementation of these models”. This reduced

degree of autonomy helps in building agent simulation frameworks in that it reduces the complexity of the system

behavior and allows a superordinated control of the agents through the environment. It also facilitates the handling

of the time management mechanisms. In addition simulated agents are different from platform agents in that

restrictions are imposed on the intra-agent architecture allowing only relatively simple and non agent-oriented

behavior models for describing basic agents to be used (Drogoul et al. 2002) .
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6.2 Simulation Middleware

Simulation middleware can be categorized into proprietary and standards-compliant middleware. A well-estab-

lished standard for simulation middleware is the High Level Architecture (HLA) standard for interoperability of

distributed simulations (IEEE 1516, see e.g. Kuhl et al. 1999), which offers, among other services, interfaces for

time management (Fujimoto 1998) . Recently, several approaches have been proposed to use HLA middleware

for synchronization of distributed multi-agent based simulations. In (Kratkiewicz et al. 2004) a technical solution

is presented that combines the Cougaar agent platform (Helsinger et al. 2004) with HLA federates for military

logistics simulations. Another approach presented in (Lees et al. 2004) extends the SIM_AGENT toolkit to

distribute simulations using HLA. Both approaches reuse and extend the existing time management facilities

as provided by Cougaar societies respective the SIM_AGENT scheduler, and introduce HLA federates only to

synchronize instances of those high-level constructs. Therefore, the way how the single agents are connected to

the time management is specific to the used system (Cougaar resp. SIM_AGENT).

In contrast, (Turner and Wang 2004) proposes an architecture where agents are attached directly to so called

gateway federates, which provide access to the HLA runtime infrastructure (RTI) and uses the time management

capabilities to control all the message exchanges between agents. This approach is in principle independent of

the underlying system, as long as communication between those systems is possible. Unfortunately, although the

architecture is implemented on the FIPA-compliant agent platform JADE (Bellifemine et al. 1999) , the system

uses a proprietary communication mechanism, and therefore cannot be used to integrate other FIPA-compliant

platforms.

Even when operating in conservative mode, the HLA allows the local virtual time of federates to advance

independently of each other. To avoid causality errors all actions have to be managed by the federates and all

messages have to include a timestamp such that before a message is delivered the local time of the sender can to be

compared to the local time of the receiver. Having a runtime infrastructure responsible for coordination resembles

to some extent the idea of performing agent interactions indirectly through coordination artifacts (Viroli et al.

2005) . Coordination and synchronization in both approaches happens at the level of individual (inter-)actions.

The time service on the other hand is a lightweight approach, because only time dependent (inter-)actions have to

be synchronized. Other actions and communication may happen at any time without the need for synchronization,

because the time service assures that in any case there is always a single global time valid for all agents.

In (Holvoet and Weyns 2004a; Holvoet and Weyns 2004b) a proprietary, but very innovative approach con-

cerning time management in MAS is described, which treats the handling of time as a separate application con-

cern. Hence it is possible to detach the simulation specific components and use the system without simulation

overhead. The approach is based on two fundamental building blocks. Time models are used to explicitly capture

the execution policy derived from the relevant timing constraints in the application domain, whereby specific time

management mechanisms are employed to enforce the given time models. A MAS execution control component

serves as new infrastructure layer between the agent application and the MAS platform. It combines the time
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models and time management mechanisms to control the execution of a MAS.

The time models are semantic duration models, which reflect the timing characteristics of the MAS’s problem

domain by ascribing durations to the relevant internal and environmental actions. Each agent possesses a local

clock, which is advanced according to the durations of actions the agent is performing. Whenever an external ac-

tion is executed it is validated against the other local clocks and eventually delayed until all agents have proceeded

to this point in time. In the meantime the agent is frozen and therefore not allowed to engage in further actions.

This is a serious problem with respect to environments in which the negotiation of agents can occur at any point

in time, as required by the example presented in section 5. Additionally, the approach currently does not support

more than one local clock per agent which hinders an agent to engage in two or more actions independent of each

other.

7 Concluding Remarks

The objective of this paper is to describe a lightweight middleware service component for time management in

coupled heterogeneous multi-agent systems. Under consideration of the special requirements imposed by the

Agent.Hospital and Agent.Enterprise scenarios, a centralized approach with one coordinator process that holds

the current simulation time and the global list of time points was chosen.

Looking back at the requirements presented in section 4, one can see how and to what degree they are addressed

by design and implementation choices:

Standardized Interactions The communication is FIPA-compliant and therefore the clients and the service can

be easily decoupled and implemented on different platforms.

Efficient Execution The use of discrete event-based simulation techniques allows the events to be arbitrarily

distributed over time without loss of performance. The choice of a conservative approach ensures that

only correctly ordered wake-up calls are generated and additionally respects the decentralized multi-agent

system structure which normally does not allow actions to be rolled back as would be needed in an optimistic

approach.

Easy Integration The basis for an easy integration process was provided on the design level by choosing a con-

servative centralized simulation approach and on the implementation level by providing a pluggable agent

module to handle timing aspects. The various administrative commands like slow and step mode that are

available through a user interface support debugging as well.

Robustness The breakdown of single client agents is tolerated by the approach through the rigid use of a timeout

mechanism. Nevertheless, the centralized coordinator remains a bottleneck and single point of failure in the

application.
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Scalability The approach does not cause much message overhead due to the fact that only timely relevant actions

need to be synchronized with respect to the time service. Preliminary tests have shown that the mecha-

nism is capable to handle a medium size application scenario (~50 agents) with acceptable synchronization

overhead. Anyhow, the centralized approach is conceptually a potential scalability drawback.

Flexibility The chosen approach offers the possibility to add and remove time clients dynamically by utilizing

the “register” and “deregister” commands.

Agent Autonomy (a) For each agent an arbitrary number of time clients (tasks) can participate at the time man-

agement allowing for the participation in different (potentially parallel) negotiations. (b) The time clients

have the possibility to reconsider their already submitted next points in time by utilizing the “block” com-

mand and subsequently updating their choice accordingly.

Recapitulating, it can be stated that the time service approach addresses most of the aforementioned requirements

(at least partly) and has the main advantage of being a simple, interoperable and agent-friendly mechanism for

time management. The main drawbacks are its centralized structure and the fact that domain protocols have to

include timing aspects when the corresponding domain actions need to be synchronized.

First experiments in the MedPAge project show that the design and implementation of the time service is well

suited for synchronizing activities in distributed multi-agent systems. To extend this work in order to simulate

and test the superordinated process flows of the Agent.Enterprise and Agent.Hospital scenarios, the interactions

between the gateway agents have to be revised, and the remaining projects have to integrate the synchroniza-

tion mechanism into their prototypes. This integration process will demand the usage of time service clients

implemented on different platforms and will hopefully lead to further results regarding the service reliability and

scalability when used in the large.
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