
On the Validation of Belief–Desire–Intention
Agents

Jan Sudeikat1,2, Lars Braubach1, Alexander Pokahr1, Winfried Lamersdorf1,
and Wolfgang Renz2

1 Distributed Systems and Information Systems,
Computer Science Department, University of Hamburg,

Vogt–Kölln–Str. 30, 22527 Hamburg, Germany
Tel. +49-40-42883-2091

{4sudeika|braubach|pokahr|lamersd}@informatik.uni-hamburg.de
2 Multimedia Systems Laboratory,

Hamburg University of Applied Sciences,
Berliner Tor 7, 20099 Hamburg, Germany

Tel. +49-40-42875-8304
{sudeikat|wr}@informatik.haw-hamburg.de

Abstract. Testing and Debugging multi-agent systems (MAS) - which
are inherently concurrent and distributed – is a challenging task. While
complex application scenarios demand intelligent entities with autonomous
reasoning capabilities, the applied reasoning mechanisms impair current
approaches to validate MAS implementations. Reactive planning sys-
tems, namely the well-known Belief Desire Intention (BDI) architecture,
have been successfully applied to implement these intelligent entities by
means of goal directed agents. Despite testing and debugging, used to
validate whether implementations behave as intended, are crucial to se-
rious development efforts, only minor attention has been payed to cor-
responding tool support and testing procedures for BDI–based MAS.
In this paper we describe and categorize common bugs in BDI–based
MAS implementations and discuss similarities and differences to general
software testing procedures. We particularly examine how the reasoning
mechanism inside agent implementations can be checked and how static
analysis of agent declarations can be used to visualize and check the over-
all communication structure in closed MAS. We present corresponding
tool support, which relies on the definition of crosscutting concerns in
BDI agents and enables both approaches to the Jadex Agent Platform.3

1 Introduction

Agent-orientation proposes autonomous, proactive entities, so-called agents [1,
2], as an atomic design and development metaphor for software systems. These
entities enable a lifelike decomposition of software systems as independent ac-
tors, interacting with each other. Besides simple reactive agents [3] have been

3 Draft version for submission to PROMAS 06

successfully applied in various application domains, the BDI architecture has
been established to develop deliberative agents [4, 5]. Methodologies and devel-
opment tools are in active development to support the construction of software
systems, utilizing this specific architecture. Implementations of this model use
the concrete concepts of beliefs, goals and plans, to design and implement individ-
ual agents [6, 7]. Beliefs denote the local knowledge of individual agents, goals
describe the agents objectives and plans are the executable means by which
agents satisfy their goals. These concepts allow agents to reason pro–actively
about which actions to take, i. e. plans to execute.

The autonomous nature of these entities, their complex interactions and their
individual memory and reasoning capabilities introduces novel levels of uncer-
tainty [8] to these software systems. While traditional development approaches
design the flow of control in a software system, the individual agent knowledge
and reasoning capabilities may lead to unexpected individual behaviors, inhibit-
ing predictions of agent actions and interactions. A major challenge for these
systems is the validation of internal reasoning processes.

In this respect we discuss currently proposed approaches to test and debug
MAS, focusing on approaches for BDI–based agents. We present how assertions
can be used in BDI concepts to support testing and debugging of BDI agents.
Implementations of BDI agents declare the structural properties of BDI agents.
The properties comprise messages to be sent and received as well as agent in-
ternal event mechanisms. We present how these declarations ca be analysed for
validation.

This paper is structured as follows. The next section introduces the BDI
architecture. In section 3 testing and validation approaches to MAS are exam-
ined and current approaches, particularly concerned with BDI architectures, are
discussed. The following section 4 presents our approaches to validate agent im-
plementations. We present a mechanism to execute assertions on BDI concepts
(4.1) and two static analysis approaches (4.2). After we exemplify their usage
and implementation for the Jadex system (section 5), we conclude and give
prospects for future work.

2 The BDI Agent Architecture

A successful architecture to develop deliberative agents is the BDI model. Brat-
man [4] developed a theory of human practical reasoning, which describes ratio-
nal behavior by the notions Belief, Desire and Intention. Implementations of this
model replaced the latter two by the concrete concepts goals and plans, leading
to a formal theory and an executable model [5, 9].

Beliefs represent the local information of agents about both the environment
and its internal state. The structure of the beliefs defines a domain dependent
abstraction of the actual environment. It can be regarded as the view–point of
an agent towards its surrounding. The goals represent agent desires, commonly
expressed by certain target states inside the beliefs. This general concept enables
pro–active agent behaviors. Agents carry out these goals on their own (see [10] for

a discussion of goals in BDI systems). Finally, plans are the executable means by
which agents achieve their goals. Agents can access a library of plans and delib-
erate which plans to execute, in order to reach a desired target. This mechanism
is also known as reactive planing, because the precompiled plans are developed
at design time. Single plans are not just a sequence of basic actions, but may
also dispatch sub-goals.

Both reactive and pro–active behaviors are enabled by internal reasoning pro-
cesses, composed of goal deliberation [11] and meta-level reasoning (problems of
this are discussed in [12]). The former is the process to select goals to be pursued
by an agent, while the latter one is responsible to select plans for execution in
order to satisfy the previously selected goals. To allow appropriate reasoning, the
goals and plans are annotated with conditions, describing constraints on their
applicability.

3 Testing and Debugging Multi–Agent Systems

Engineering approaches need to ensure the quality of developed systems. In this
respect quality is commonly understood as a set of properties (e.g. [13]) of a (soft-
ware) product or an activity, which are related to the fulfillment of predefined
requirements. In [14] evaluation activities for complex, possibly adaptive and/or
distributed software systems have been classified with respect to the amount of
expertise required for their application by developers (cf. figure 1) . Testing uses

Testing
Run-Time
Monitoring

Static
Analysis

Model
Checking

Theorem
Proving

Strength

Ex
pe
rt
is
e

A
pp
lic
at
io
n

Fig. 1. Categories of evaluation Techniques according to [14]

special programs to simulate input sequences and compare them to specified
outputs. Run–time monitoring enables analysis of run–time behaviors by obser-
vation of applications with specified input-parameters resp. under pre-defined
conditions. Static analysis examines the structure of source codes without ex-
ecuting it, while Model Checking verifies that a system satisfies a specification
by examination of all reachable states. Finally, Theorem Proving enables formal
proofs of correctness.

Both Model Checking and Theorem Proving provide best confidence in source
codes but require high cost in both specification effort and computation. While
ongoing research [14] is enhancing their applicability, these requirements often
impair their application in commercial development settings. These mainly rely
on monitoring, static analysis and testing (see for a general discussion of testing
approaches for MAS [15]). While we address monitoring of BDI agents in [16],
we focus here on the latter two. Figure 2 summarizes the different testing stages

Unit Test Component Test System /Integration
Test

Integration Test
of (Sub-)Systems

: System : 3rd Party Component: Component: Class / Atomic Module

Fig. 2. Typical testing stages for a BDI–based multi–agent system. The System is
developed from single modules expressing functionalities to an integrated solution that
interfaces 3rd party software packages.

from an single component to an integrated application which is embedded in an
IT infrastructure (cf. [17]). While testing is commonly understood as an ongo-
ing activity, iterated and adjusted to different abstraction levels, MAS literature
mainly addresses testing procedures for individual agents, namely agent execu-
tion and agent communication.

3.1 Testing Agent Execution

Jade testsuite / Whitestein testsuite
[18],[19]

3.2 Testing Agent Communication

The communication between agents is an inherent and foundational property of
MAS while the exchanged messages are clearly defined artifacts to be recorded
and analysed. Various tool support has been developed to verify the message ex-
change and the adherence to communication protocols. ACLAnalyser? [20],[21],[22],
[23], [24]

3.3 Testing and Debugging the BDI Architecture

A comprehensive testing strategy for BDI agents is outlined in figure 3. Accord-
ing to figure 2 testing procedure should move from basic functionalities, which
can be conveniently captured by capabilities [12, 25] to the interplay of these in
individual agents. Approaches to verify the interplay of the agents among each
other and among the MAS with a surrounding IT infrastructure are expected to
differ only slightly.

: Goal : Plan : Beliefbase

Functionality/
Capability

Agent
(Set of Capabilities)

: Agent

Multi-Agenten
System

Integrated Solution
(Set of Products)

: 3rd Party Component: Capability

Fig. 3. Typical testing stages in a software project. The System is developed from
single functionalities (possibly modularized) to an integrated solution which interfaces
3rd party software packages.

Current approaches to validate BDI agents are concerned with (1) the com-
pliance of agent execution to design artifacts drawn from development method-
ologies [24], (2) the comprehension of agent behaviors by comparison of models
of the expected order of reasoning events [26, 27] and (3) test case generation for
BDI–plans, based on coverage criteria.

While the RMIT uses design artifacts from the Prometheus methodology [28]
mainly for validation of communication protocols [20, 24] and agent communica-
tion [21], they also define and test for coverage and overlap of BDI plans. BDI
reasoning events have full coverage when the event is expected to have always
an applicable plan and an overlap for an event describes that multiple plans may
be applicable to handle it [24]. In [24] these criteria are validated by automated
introduction of logging code to monitor plan adoption.

In[27] a so–called Tracer is visualizing the order of reasoning events in graph
structures. In addition, the found sequences of events are compared to models
of intended sequences. Differences in the models highlight differences between
possible event sequences in actual implementations and the intended agent in-
ternals.

In [29] a comprehensive coverage oriented testing methodology has been pro-
posed. The Tool BDITester utilizes a subsumption hierarchy of coverage criteria
which have been adjusted to plan execution to generate test cases for agent
plans.

4 A Practical Approach to the Validation of BDI
Reasoning

In the case of BDI agents, proper functioning is based on the processed BDI con-
cepts. These comprise (1) belief consistency, (2) proper goal adoption and con-
sistency and finally (3) correct plan execution. Since agents reason pro–actively
about their goal and plan adoption, verification of agent reasoning mechanisms
is crucial. While developers declare the BDI concepts and annotate conditions to
their applicability in order to describe the behavior of the goal directed agents. A
comprehensive testing procedure needs to be able to assure that agents will come
to the intended conclusions, i. e. adopt appropriate goals and plans. Functional
properties only ensure that the subsequent actions are executed properly.

In order to address these issues on BDI agent validation, we present a novel
testing and validation approach for BDI agents. It comprises two parts: First,
we found that the contributive execution of assertions statements is useful to
identify misconceptions in agent code. Secondly, a static analysis of BDI agent
declarations has been enhanced to check both the consistency of predefined in-
ternal events and messages.

4.1 Assertions in BDI-Concepts

Assertions are typically provided as extensions to programming languages4. After
we briefly introduce assertions in general, we classify which properties in BDI
reasoning can be validated using them in BDI agents. Their usage in the Jadex
system (cf. section5.1) is exemplified in section 5.

Assertions in Software Engineering Following Hoare [30], an assertion is:

”... a Boolean formula written in the text of a program, at a place where
its evaluation will always be true or at least, that is the intention of the
programmer...”

If an assertion statement evaluates to false, the program has entered an incon-
sistent state. Assertions have their origin in program verification [31, 32] and can
be traced back to the founding works of Turing [33], who introduced this concept
to specify interfaces between parts of programs. Despite their age, assertions are
widely used in the software industry. The design by contract principle [13] is
closely related to object–oriented development and assertions lend themselves to
detect, diagnose and classify violations of these contracts specified as pre– and
post–conditions (e.g. in the Eiffel programming language).

Defects in programs can only be identified when testing efforts lead to in-
correct output to be observed. This observability of software artifacts requires
that (1) that an input causes a defect code to be executed, (2) the program
data in the succeeding state gets corrupted and finally (3) the corrupted data

4 e. g. introduced to Java in version 1.4

propagates to an output state leading to incorrect output [34]. Components are
commonly tested using unit–test5 frameworks. These facilitate instantiation, au-
tomated method calls and comparison of corresponding return values to output
specifications. While these tests can usually be used to examine corrupted object
states, encapsulation and information hiding may mask errors in integration and
system–level tests, used to examine the interplay of components and subsystems.
In [34], assertions have been proposed as means to increase the likeliness that
incorrect outputs occure when defected code is executed.

A Classification of Assertions in BDI Architectures As described in sec-
tion 3.3, the validation of the BDI–based reasoning process is a major challenge
in testing and debugging BDI agents. While only message exchange and exter-
nal agent actions are observable on the MAS level, it is necessary for developers
to gain confidence that the intended goals and plans are adopted during agent
execution. While encapsulation and information hiding may be detrimental to
state–error propagation in object–orineted systems, the same is true for the
event–based and condition centric reasoning cycles in BDI agents.

In this respect assertions can be used to (1) specify and ensure interfaces
between BDI concepts and (2) ensure invariant properties in agent execution.
While the conditions which are annotated to BDI goals and plans enable au-
tomated reasoning, developers intend specific agent properties and behaviors.
Explicit statements of these intentions for all BDI concepts supplement concept
properties and highly increase the observability of unintended and/or incon-
sistent agent states. According to the design by contract principle [13], similar
contracts – between agent states and BDI concepts – can be specified using
assertions.

For beliefs the contracted properties are certainly specification of certain sub-
ranges of belief values. Since some BDI frameworks allow the storage of generic
objects class specific properties may be restricted. When goals are adopted the
subranges of parameters values my be restricted. Invariants may be specified by
assertions in order to highlight when unintended goals are instantiated in specific
agent states. These assertions supplement the creation, context and drop condi-
tions for BDI plans and increase observability. Also for plans the value ranges
of parameters and return values can be checked.

The annotated conditions also provide additional documentation for the
agent code. In section 5 we present an implementations that executes assertions
at every state change of the annotated element. Developers need to be aware of
negative side effects. First, the execution of assert–statements is intrusive to the
agent execution and these statements may have undesired side effects. Extensive
processing in these statements will slow down the agents and side effects may
impair proper execution.

5 e. g. http://www.junit.org

4.2 Static analysis

BDI–based MAS are composed of a set of agent declarations which define the
properties of BDI concepts and further implementation dependent details. Fig-
ure 4 gives a canonical overview of such a MAS, composed of n agents. Among
the declared details are the messages to be sent and received as well as internal
events which may trigger plan execution (e. g. found in [5, 35, 36]). The consis-

Agent Type 1

Beliefs
Belief 1

Belief n

Events
Internal Event

Message Event A...

Plans
Plan 1

Plan k

...

Goals
Goal 1

Goal m

...

...

... ...
Message Event B

Agent Type n

Beliefs
Belief 1

Belief n

Events

Message Event A...

Plans
Plan 1

Plan k

...

Goals
Goal 1

Goal m

...

... ...

Message Event B

Triggers

: Intra Agent Communication
: Inter Agent Communication

Message
Transport

Message
Transport

Fig. 4. A canonical view on a Jadex–MAS. One to n agents are declared. Among the
properties of BDI concepts and implementation details, Internal and Message Events
are specified. Only matching message events, e. g. A and Ā, enable communication.

tency of these two important implementation concepts can be checked in order to
validate structural properties and highlight misconceptions. A prototype imple-
mentation analyses both kinds of event declarations, the latter ones are ordered
in a graph structure to display the possible communications in the MAS under
consideration.

The Static Structure of Internal–Events Internal events typically trigger
plan adoption as a mean of intra–agent communication (cf. figure 4). Therefore
proper specification of these events and their triggering function can be analysed
straight forward by iteration and comparison. This allows to validate that all
specified events actually trigger plans and vice versa all triggers are correctly
declared.

Static Analysis of Message–Events As outlined in figure 4 agent declara-
tions comprise the messages to be sent and received. Therefore a set of agent dec-

larations can be used to analyse the communication structure of a closed MAS.
Message declarations comprise FIPA6 compliant performatives, utilized ontolo-
gies, encryption schemes, specific content types, among others. Only matching
properties enable proper message exchange. While these declarations only reflect
the static possibility of message exchange they can be used to identify messages
which can not be send or received.

5 A Case Study – The Marsworld in Jadex

To exemplify the usage of the above described testing and analysis tools, we ex-
amine an example MAS from the Jadex–Project. This example scenario has been
inspired by a case study in [37], where hierarchical structures of static, predefined
roles are examined. In order to allow for cooperative behavior, the system has
been generalized as follows. The objective for a group of robots (agents) in the
so–called Marsworld, is to mine ore on a far distant planet. The mining process
is composed of (1) locating the ore, (2) mining it on the planets surface and (3)
transporting the mined ore to the home base. Therefore, a collection of three
distinct types of agents are released from a home base to a bounded environ-
ment. All of them have a sensor range to detect occurrences of ore in the soil an
start immediately a searching behavior. Sensed occurrences of ore are reported
to the so-called sentry-agent. This robot is equipped with a wider sensor range
and can verify, whether a suspicious spot actually accommodates ore. When
ore is found, the location is forwarded to a randomly selected production-agent,
equipped with a dedicated mining device. After mining is finished a group of
carry-agents is ordered to transport ore to the home base (constant number of
round trips). In this scenario agent change between two distinct behaviors. They
either search for ore or perform a dedicated action, i.e. sense ore, mine ore or
transport ore. When the ordered actions have been performed agents continue
searching. Details on the game dynamics can be found in [16].

5.1 The Jadex System

The Jadex research project7 [38],[39], provides the BDI–concepts on top of the
well known JADE8 Agent Platform [40]. A suite of tools facilitate the develop-
ment, deployment and debugging of Jadex–based MAS. The individual agents
consist of two parts. First, they are described by so–called Agent Description
Files (ADF), which denote the structure of beliefs, goals and plans in XML
syntax. Secondly, the activities agents can perform are coded in plans, these are
ordinary Java-classes. Plan descriptions in the ADF (so–called heads) reference
the compiled Java–classes (so–called body) and denote the conditions which may
lead to plan instantiation (for details cf. [41]).

6 http://www.fipa.org/
7 http://vsis-ww.informatik.uni-hamburg.de/projects/jadex
8 http://jade.tilab.com/

In addition to specifications of the basic BDI concepts, ADF also enforce
the description of further implementation details. E. g. it is required that agents
declare the messages – so–called message events – which can be sent inside of
plans. The descriptions of these FIPA compliant messages comprise among other
details the used performative, protocol, ontology and restrictions on the content
object to be delivered.
Jadex plans are also allowed to dispatch so–called internal events, which may di-
rectly trigger plans in the same agent, forming an agent internal communication
mechanism. While these events are declared in the ADF the plan descriptions
denote the triggering events.

We developed a command line tool which searches all ADFs from a list of
folders, and matches the declared messages against each other. The enabled mes-
sage exchanges are listed in a detailed report and are compared to the declared
messages in order to identify messages which can not be sent or received.

5.2 Checking Consistency Using Assertions

The implemented assertion mechanism executes arbitrary Java statements, that
can be annotated to beliefs (including beliefsets), goals and plans in assertion
tags in agent ADFs. The annotated statements will only be executed when the
ADF comprises a references a capability named jadex.assertion.Assert (cf.
figure 5), therefore allowing to turn assertion execution on and off by simple ADF
modification. Assertion statements are expected to evaluate to true. When they
are violated a detailed warning is generated, specifying the agent and the el-
ement where the assertion evaluated to false. Figure 6 exemplifies the usage

Fig. 5. Referencing the assertion capability.

of assertions. This code fragment is taken from the sentry agent of the mar-
sworld example, which stores reported and found ore locations in a beliefset
named my targets. The shown code checks whether the sum of stored values
does not exceed the amount of targets in the game environment (defined in a
class Environment), which can be accessed from within the beliefs of the agent.
This assertion mechanism has been implemented as a crosscutting concern in
the Jadex system. This concept leads to a novel level of modularization in BDI
implementations and is therefore briefly discussed.

Fig. 6. An assertion statement added to a beliefset description in a jadex ADF. The
statement checks the maximum amount of a target set.

Crosscutting Concerns in BDI–Agents In [12] so–called capabilities have
been proposed to modularize BDI agents. These capabilities comprise beliefs,
goals, plans and a set of visibility rules of these elements to the surrounding
agent. In development of MAS, they are used to define specific functionalities
which can be imported by different agent types.

Aiming towards automated assertion execution, we utilized an enhancement
to this modularization concept, which allows to define crosscutting concerns in
agent implementations. According to the Separation of Concerns [42, 43] the
functionality of a software system can be decomposed into core concerns, which
are to be separated into different components or modules and so–called aspects
which crosscut them. Crosscutting prime examples are inter alia failure recovery
and logging.

In this respect capabilities [25, 12, 44] intend to define and modularize core
concerns in BDI agents. Agent types can share functionality by inclusion of
the same capability. Similar to conventional development efforts — without the
notion of aspects — non–functional concerns can be captured in modules and
executed by explicit references to elements inside these modules. So–called co–
efficient capabilities (CC) automate this referencing, by exploitation of the local
reasoning mechanisms. We name these capabilities co–efficient, because they
register for contributive processing on certain BDI reasoning events. While it is
possible to to modify the surrounding agent, this mechanism allows crosscutting
functionalities, like logging, failure recovery etc., to be automatically triggered,
without explicit references in goals or plans. Details of their implementation,
a discussion of similarities and differences to object–oriented aspects and their
usage for minimum intrusive plan observation can be found in [16].

The above described jadex.assert.Assert capability implements a Listen-
ing Object to all events originated from belief access, goal or plan adoption.
For all state changes of these elements this listening object looks up annotated
assertion statements and executes them.

5.3 Internal Event Consistency

A typical declaration of an internal event is shown in figure 7. The event is
declared under the name internal 1 and triggers the execution of a plan called
SimpleExamplePlan3(). Declared InternalEvents can be dispatched within plans

Fig. 7. An internal event called intern 1 triggers the execution of the plan SimpleEx-
amplePlan3()

via the Jadex API [41]. We implemented a capability (jadex.iecheck.IECheck)
which checks on agent startup whether all declared events trigger plans. Despite
internal events typically trigger plans in the presented way, it is also possible that
plans handle these events directly by a blocking call of waitForInternalEvent
(String type, long timoeout) or waitForInternalEvent(String type). There-
fore our implementation utilizes the novel annotation mechanism of Java 5.0.9

Developers are expected to annotate the handled events to the plan classes using
this meta–data facility (@HandlesInternalEventsString[] types).

5.4 MessageEvent Consistency

Figure 8 exemplifies the declaration of a message event. This message is taken
from the sentry agent in the marsworld example. The used performative, transmi-
tion language and ontology are declared. In addition, the direction of the message
need to be specified. While this example is declared to be sent (direction=send),
possible values are also receive and send_receive [41]. We developed a tool
to examine the declared messages in a set of ADFs. A given list of folders will
be searched for ADF files and he declared message events are iterated. Message
properties and declared directions are compared in order to compute the possible
message exchanges. These are reported together with orphaned message events,
where no matching sender/receiver is specified.

9 http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html

Fig. 8. Declaration of a message event in the sentry agent of the marsworld example.
This message transmits a location to the production agent to order the mining of ore.

The found message matches are displayed in a graph structure as exemplified
in figure 9. In these graphs agents (bigger, light) and message events (smaller,
dark) are denoted as nodes. Messages are connected to the declaring agent via
aggregation edges (following the well known UML10 notation), while possible
message exchanges are represented by blue arrows. Since all messages are dis-
played, i. e. are not structured in the protocols involved, we display the MAS
in a three dimensional space to allow efficient layout. Graph representations are
generated to be displayed with the Wilmascope11 tool. This operating system
independent graph visualization tool visualizes XML representations of graphs
and allows users to set various rendering options to control a force directed lay-
out [45]. Therefore users can move freely along the virtual graph and adjust the
graph layout to their needs. Figure 9 (right hand side) displays the static commu-
nication structure of the marsworld example. Carry and production agents can
report ore locations (inform_target) to the sentry agent. Sentry agents can or-
der mining by the production agent via (request_producer) and producer agents
in turn can order the transportation of ore by carry agents (request_carry).
The left hand side shows the same MAS with a mistake in the declaration of
the request_producer message. The force directed layout highlights that sentry
and producer agents have no mean to communicate with each other and that
two message events are orphaned.

6 Conclusions

In this paper we highlighted that the validation of the BDI–based reasoning
process is a major challenge in testing and debugging BDI agents. We proposed
assertions for this purpose, exemplified their usage and outlined a crosscutting
10 http://www.omg.org
11 http://wilmascope.org

Fig. 9. The communication–network of the Marsworld example. Bigger vertices (light
colored) denote Agents while the smaller ones (dark colored) represent MessageEvents
in the agent ADFs. While the right hand side displays the intended communication
structure, the force directed layout on the left side highlights that the sentry agent can
not contact the producer.

implementation. In addition, static analysis of a set of agent declarations allowed
to verify the consistency of internal events and message declarations. Finally, the
overall communication structure of MAS have been visualized as three dimen-
sional graphs.

While assertions have their origin in program verification [31, 32], they may
also be used for formal proofs of correctness for proper goal and plan adop-
tion. examination of common bugs and debugging strategies for BDI agents may
inspire the methodic usage of assertions, i. e. a structured process to derive as-
sertions from agent declarations, which has not been examined here. In addition
it needs to be taken care that violations of these are in fact reflecting inconsistent
agent states and the assertions have no side effects.

The presented visualization approach is preliminary and we plan to enhance
display and user interaction in order to show the dynamic properties of message
exchange and plan execution (cf. [16]).

References

1. Odell, J.: Objects and agents compared. Journal of Object Technology 1 (2002)
2. Franklin, S., Graesser, A.: Is it an Agent, or just a Program?: A Taxonomy for

Autonomous Agents. In: Intelligent Agents III. Agent Theories, Architectures and
Languages (ATAL’96). Volume 1193., Berlin, Germany, Springer-Verlag (1996)

3. Brooks, R.A.: Elephants don’t play chess. Robotics and Autonomous Systems 6
(1990) 3–15

4. Bratman, M.: Intentions, Plans, and Practical Reason. Harvard Univ. Press. (1987)
5. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings

of the First Intl. Conference on Multiagent Systems. (1995)
6. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning: an experiment

with a mobile robot. In: Proc. of AAAI 87, Seattle, Washington (1987) 677–682
7. Pokahr, A., Braubach, L., Lamersdorf, W.: A flexible bdi architecture supporting

extensibility. In: The 2005 IEEE/WIC/ACM Int. Conf. on IAT-2005. (2005)
8. Jennings, N.R.: Building complex, distributed systems: the case for an agent-based

approach. Comms. of the ACM 44 (4) (2001) 35–41
9. Rao, A.S.: Agentspeak(l): Bdi agents speak out in a logical computable language.

In: MAAMAW ’96: Proceedings of the 7th European workshop on Modelling au-
tonomous agents in a multi-agent world : agents breaking away, Springer-Verlag
New York, Inc. (1996) 42–55

10. Braubach, L., Pokahr, A., Lamersdorf, W., Moldt, D.: Goal representation for bdi
agent systems. In: Proc. of PROMAS’04. (2004)

11. Pokahr, A., Braubach, L., Lamersdorf, W.: A bdi architecture for goal deliber-
ation. In: AAMAS ’05: Proceedings of the fourth international joint conference
on Autonomous agents and multiagent systems, New York, NY, USA, ACM Press
(2005) 1295–1296

12. Busetta, P., Howden, N., Rönnquist, R., Hodgson, A.: Structuring bdi agents in
functional clusters. In: ATAL ’99, Springer-Verlag (2000) 277–289

13. Meyer, B.: Object Oriented Software Construction. Prentice Hall (1997)
14. Menzies, T., Pecheur, C.: Verification and validation and artificial intelligence. In

Zelkowitz, M., ed.: Advances in Computers. Volume 65., Elsevier (2005)
15. Timm, I.J., Scholz, T., Frstenau, H.: IV From Testing to Theorem Proving. In:

Multiagent Systems Intelligent Applications and Flexible Solutions. to be pub-
lished by Springer (2006)

16. Sudeikat, J., Renz, W.: Monitoring group behavior in goaldirected agents using
coefficient plan observation. In: Submitted to the 7th International Workshop on
Agent-Oriented Software Engineering (AOSE-2006). (2006)

17. Hailpern, B., Santhanam, P.: Software debugging, testing, and verification. IBM
Systems Journal 41 (2002) 4–12

18. Liedekerke, M.H.V., Avouris, N.M.: Debugging multi-agent systems. Information
and Software Technology Journal 37 (1995) 103–112

19. Ndumu, D.T., Nwana, H.S., Lee, L.C., Collis, J.C.: Visualising and debugging
distributed multi-agent systems. In: Proc. of AGENTS ’99. (1999) 326–333

20. Poutakidis, D., Padgham, L., Winikoff, M.: Debugging multi-agent systems using
design artifacts: the case of interaction protocols. In: Proc. of AAMAS ’02. (2002)

21. Poutakidis, D., Padgham, L., Winikoff, M.: An exploration of bugs and debugging
in multi-agent systems. In: Proceedings of the 14th International Symposium on
Methodologies for Intelligent Systems (ISMIS 2003). (2003)

22. Satyanarayanan, M., Steere, D.C., Kudo, M., Mashburn, H.: Transparent logging as
a technique for debugging complex distributed systems. In: 5th European SIGOPS
Workshop, on “Models and Paradigms for Distributed Systems Structuring”, Mont
Saint-Michel (France), IRISA, INRIA-Rennes (1992)

23. Flater, D.W.: Debugging agent interactions: a case study. In: Proceedings of the
2001 ACM Symposium on Applied Computing (SAC), ACM (2001) 107–114

24. Padgham, L., Winikoff, M., Poutakidis, D.: Adding debugging support to the
prometheus methodology. Engin. Applications of Art. Intel. 18 (2005) 173–190

25. Braubach, L., Pokahr, A., Lamersdorf, W.: Extending the capability concept for
flexible bdi agent modularization. In: Proc. of PROMAS-2005. (2005)

26. Lam, D.N., Barber, K.S.: Automated interpretation of agent behavior. In: Work-
shop for Agent-Oriented Information Systems (AOIS-2005). (2005)

27. Lam, D.N., Barber, K.S.: Comprehending agent software. In: Proc. of the 4th int.
joint conf. on autonomous agents and multiagent systems (AAMAS ’05). (2005)

28. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical
Guide. Number ISBN 0-470-86120-7. John Wiley and Sons (2004)

29. Low, C.K., Chen, T.Y., Rönnquist, R.: Automated test case generation for bdi
agents. Autonomous Agents and Multi-Agent Systems 2 (1999) 311–332

30. Hoare, C.A.R.: Assertions: a personal perspective. Software pioneers: contributions
to software engineering (2002) 356–366

31. Floyd, R.: Assigning meaning to programs. Mathematical Aspects of Computer
Science XIX American Mathematical Society (1967) 19–32

32. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10) (1969) 576–580,583

33. Turing, A.M.: Checking a large routine. In: Report on a Conference on High Speed
Automatic Calculating Machines, Cambridge University Mathematical Lab. (1949)

34. Voas, J.: How assertions can be increase test effectiveness. IEEE Software
March/April (1997) 118–122

35. Busetta, P., R/”onnquist, R., Hodgson, A., Lucas, A.: Jack - intelligent agents
– components for intelligent agents in java. Technical report, Agent Oriented
Software Pty. Ltd, Melbourne, Australia (1998) http://www.agent-software.com.

36. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A bdi reasoning engine. In
R. Bordini, M. Dastani, J.D., Seghrouchni, A.E.F., eds.: Multi-Agent Program-
ming, Springer Science+Business Media Inc., USA (2005) 149–174 Book chapter.

37. Ferber, J.: Multi-Agent Systems. Addison Wesley (1999)
38. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A short overview. In: Main

Conference Net.ObjectDays 2004. (2004) 195–207
39. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: Implementing a bdi-

infrastructure for jade agents. EXP - in search of innovation (Special Issue on
JADE) 3 (2003) 76–85

40. Bellifemine, F., Rimassa, G., Poggi, A.: Jade a fipa-compliant agent framework.
In: In 4th International Conference on the Practical Applications of Agents and
Multi-Agent Systems (PAAM-99). (1999)

41. Pokahr, A., Braubach, L., Walczak, A.: Jadex User Guide. Distributed Systems
Group University Hamburg. 0.941 edn. (2005)

42. Dijkstra, E.: A Discipline of Programming. Prentice-Hall (1976)
43. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.

Commun. ACM 15 (1972) 1053–1058
44. Padgham, L., Lambrix, P.: Agent capabilities: Extending bdi theory. In: Proceed-

ings of the Seventeenth National Conference on Artificial Intelligence and Twelfth
Conference on Innovative Applications of Artificial Intelligence. (2000) 68–73

45. Dwyer, T.: 3d uml using force directed layout. In: Proceedings of the Australian
Symposium on Information Visualization. (2001) 77–85

