
Augmenting BDI Agents with

Deliberative Planning Techniques

A. Walczak, L. Braubach, A. Pokahr, W. Lamersdorf

Distributed Systems and Information Systems
Department of Informatics, University of Hamburg

D-22527 Hamburg, Germany

Abstract. Belief-Desire-Intention (BDI) agents are well suited for au-
tonomous applications in dynamic environments. Their precompiled plan
schemata contain the procedural knowledge of an agent and contribute to
the performance. The agents generally are constrained to a fixed set of ac-
tion patterns. Their choice depends on current goals, not on the future of
the environment. Planning techniques can provide dynamic plans regard-
ing the predicted state of the environment. We augment a BDI frame-
work with a state-based planner for operational planning in domains
where BDI is not well applicable. For this purpose, the requirements for
the planner and for the coupling with a BDI system are investigated. An
approach is introduced where a BDI system takes responsibility for plan
monitoring and re-planning and the planner for the creation of plans. A
fast state-based planner utilizing domain specific control knowledge re-
tains the responsiveness of the system. In order to facilitate integration
with BDI systems programmed in object-oriented languages, the plan-
ning problem is adopted into the BDI conceptual space with object-based
domain models. The application of the hybrid system is illustrated using
a propositional puzzle and a multi agent coordination scenario.

1 Introduction

BDI is a well established model of agency [1] based on the Theory of Practical
Reasoning [2]. Early BDI-systems have been devised with the idea in mind to
overcome the poor performance of propositional planners controlling agents in
dynamic environments at that time. The systems are based on two central ideas.
One of them is the reactive planning, comparable with hierarchical planning
systems [3], the other is deliberation [4, 5].

Planning, an approach central to Artificial Intelligence (AI) research, is sub-
stantial for rational agent behavior. It is a method that aids agents in solving
complex problems in synthetic and natural environments. Although planning
systems are devised for means-end reasoning and are capable to find actions
that achieve goals, they are less useful to decide, which goals to pursue [6].

Due to advances in planning techniques and understanding of planning prob-
lems, it seams reasonable and interesting to combine the strength of flexible
means-end reasoning given by deliberative planners with the timely reactivity

and goal deliberation capabilities carried by BDI systems. It is also interest-
ing to analyze suitability of planning approaches to BDI agents in real world
applications.

In order to benefit from both paradigms one needs to consider the strengths
of both paradigms. There are multiple ways to compose the systems and the
outcome is different dependent on their properties and features. As stated above,
hierarchical planning techniques are comparable with BDI. Their strength lies
in the evaluation of future environmental states and a constructed proof that a
course of action will achieve goals under the preconditions. On the other hand,
BDI systems handle dynamic environments more efficiently and are capable of
both: reactive behavior, and maintenance of long term goals. They sacrifice the
optimality and correctness of their planning algorithms for performance.

Both paradigms deal with generation of actions and share common ideas, so
there are concerns which parts of a control and planning problem will be dele-
gated to a planner and which to the BDI subsystem. This determines the choice
of the BDI component and the planning algorithm. The overall architecture
depends strongly on those choices.

A hybrid system can be built twofold. The planner may be applied to produce
long term plans and to hand over single parts to a reactive BDI subsystem for
the execution. This approach invokes serious performance concerns especially in
dynamic environments where continuous changes force the planner to re-plan -
a process with performance penalties comparable to planning itself. Generally,
planning algorithms have been devised for one shot planning and are well suited
for a solution of a single planning problem. They are rather less useful to maintain
long term intentions of an agent.

The other way round is to augment the BDI system with a relatively simple
planner that is invoked from the BDI controller and used for the purpose of
creating short-term plans that need a proof of correctness. The last approach is
used in this work to join the best from both paradigms.

The remainder of this paper proceeds as follows. In Section 2 we define the
concept of a planning problem used for this work. Section 3 discusses the choice
of a planning algorithm. In Section 4 we propose a way to integrate a planning
component into a BDI framework. Section 5 presents two application examples
of the hybrid system. Related work is presented in Section 6 and a conclusion is
given in Section 7.

2 Planning Concepts

The basis for planning is given in the form of a planning problem. In order to
represent a planning problem one needs at least to describe states of the world
and how these states may change due to agent’s actions. In a restricted classical
view, this can be given by a model of a state-transition system Σ = (S,A, γ)
where S is the set of states, A is the set of actions and γ : S × A → S ∪ {⊥}
is the transition function mapping a state and action to another state. ⊥ is the
illegal state being a result of a not applicable action. The planning problem is

given by a triple P = (Σ, s0, g) where s0 ∈ S is the initial state and g is the
description of a goal state inducing the set Sg := {s ∈ S | s satisfies g} [7].

The following definition of a planning problem has been found useful for the
purpose of this work. It deviates from a standard definition by introducing utility
functions interpreted as agent desires D. The other difference is an object-based
representation of states build upon the sets O, A and V . The initial state s0

has been understood as the current state sc to reflect the fact that the planning
takes place at runtime.

Definition 1. A state is a tuple s =< G, σ, sp, as > where:

– G is a stack of agent goals in that state and each goal is a difference function
g∈G : S → R revealing an approximate distance from the state to the goal in
a common weighted measure.

– σ : O × A → V ∪ O is a partial function assigning values to the attributes
of objects. O, A and V are taken from the model of a planning problem
described below.

– sp is the parent state of this one.
– as is the action applied to sp state yielding s.

The planner reasons about states of the environment and the agent’s mental
states. The environment is represented by object-based models given by an as-
signment function σ over a set of objects O and attributes A given below. For
short-term planning only the immediate goals are interesting for the planner.
A stack of goals G allows for ordered hierarchical decomposition. It is assumed
that goals at this level of planning have been filtered through the deliberative
BDI process and are consistent with each other.

Definition 2. A planning problem is a tuple P =< A, sc, D,O,A, V > where:

– A is a set of all actions available to the agent.
– sc is the current state of the environment.
– D contains agent desires, in respect to possible solutions, assumed not to

change within the short scope of operational planning.
– O contains the objects from the planning domain with attributes from the set
A taking values from the set V .

Desires are inverse utility functions d∈D : S → R on the states and reflect
(not necessarily coherent) mental attitudes of the agent. Both desires and goals
influence actions chosen by the agent, but only goals represent concrete points
in the future state space, that the agent has to achieve. They also have direct
impact on the choice of future goals.

Each action a ∈ A is a tuple a =< pa, γa, ωa > with pa being a predicate
over a state telling if the action is applicable. γa and ωa are transition functions
over the set of goals and attribute assignment functions respectively. If action
a is applicable to s, the application transforms it to a new child state s′ =<
γa(G), ωa(σ), s, a >. This yields a new set of goals G′ = γa(G) and new attribute
assignment function σ′ = ωa(σ).

3 Planning Algorithm

Planning has been assumed to be a higher cognitive activity than reacting and
controlling behavior and has been granted more computational resources. We in-
troduce a planner at a level below BDI control and deliberative behaviors. Given
such an architectural design, the choice of a planning algorithm is restricted to
a particular subset. With an advanced BDI system, one is equipped with rea-
soning and a strong conceptual framework, so there is no need to duplicate the
functionality of both. To guide our choice of planning algorithms, the latest
results from planning competitions [8] have been used. Planners entering such
competitions have been tested on many standardized planning examples. Better
performance indicates the right choice of an algorithm. Changing demands of
successive planning competitions favored approaches that are easily expandable
to new planning concepts.

In order for the system to remain responsive to circumstances that induced
the planning task, the planner needs to operate under tight timing constraints.
This fact emphasizes performance, not the generality or cognitive adequacy of
a planning algorithm. State-based planners augmented with domain specific
knowledge have been shown superior to partial-order planners, in that respect [8].
They are also easily applicable to many planning domains including proposi-
tional, numeric, timed, continuous and contingent domains.

The following planning algorithm is a state-based search algorithm working
on an agenda of states. The main loop examines states from the agenda and
expands them searching through the state space for one that achieves some or
all of the goals. It terminates, when the agenda gets empty or when the time
limit intended for planning is exceeded (cf. line 4). Please recall that states are
tuples of the form < G, σ, sp, as >. Each state has an assigned inverse utility
estimate through the function e : S → R.

Plan(A, sc, D, T)
1 best← sc
2 e(best)←∞
3 agenda← {sc}
4 while |agenda| > 0 and tc < T
5 do s← removebest(agenda)
6 if e(s) < e(best) and |Gs| <= |Gbest|
7 then best← s
8 Options← generateOptions(s,A)
9 for each {a =< pa, γa, ωa > | a ∈ Options}

10 do G′ ← γa(G)
11 s′ ←< G′, ωa(σ), s, a >
12 removeSatisfiedGoals(s′)
13 e(s′)← inverseUtility(s′, D) + goalsDistance(s′, G′)
14 insert(s′, agenda)
15 return best

For many real world problems it is impossible for an agent to enumerate all
action instances. Even in discrete domains, the number of possible actions be-
comes prohibitive. In a concrete design one would delegate the task of generating
a set of applicable actions to a separate option generator component. Based on a
set of action schemata and the actual situation it generates all applicable actions
(cf. line 8). Lines 10 and 11 apply the transition function. In line 12 all satisfied
goals are removed from the top of the goal stack of the new state. In order to
sort states by their utility, a new estimate is calculated in line 13 before the
state is inserted into the agenda. The variable implementation of pop and insert
methods allows for different state exploration strategies.

There are two basic types of actions. Concrete actions modify object models
in a state by changing the σ assignment function. In this case, the goal manip-
ulation function is an identity function γa = id. The other type of actions are
abstract ones called decomposition methods that remove a goal from the top of
the goal stack G and replace it by a list of totally ordered subgoals. Such an
action has generally no effect on the models of the environment.

The domain specific knowledge used to guide the planner is hidden in the
action applicability predicates pa, in the goal distance functions g ∈ G, and in
the inverse utility functions d ∈ D (cf. sec. 5). Including a reference to a parent
in a state allows for complex temporal conditions over the course of actions,
like safety and liveness ones [9]. The estimate is computed using the heuristic
function below:

e(s) =
∑

d∈D
d(s) +

∑

g∈G
g(s)

This choice of this heuristic embodies the judgments that optimal solutions are
anyway computationally expensive.

On success, the planning algorithm returns a state where every immediate
goal posed to the planner is satisfied. When the algorithm fails to find a complete
plan, the best plan in respect to the estimate and the number of unachieved goals
is returned.

The emphasis has been put on the performance and use of domain specific
knowledge. The difference to other linear planning algorithms based on the state-
space search is the explicit representation of agent intentional structure manip-
ulated during the process of planning. E.g. the Strips planner reasoned with a
goal stack, this planner reasons about a goal stack in each planning step. This
makes the planner similar to a state-based HTN planner with ordered decom-
position. The understanding of agent’s desires as heuristic and utility functions
used to guide the planning process is also specific to this work.

4 Integration with a BDI framework

A generic BDI agent architecture (based on [10, 4]) is illustrated in Figure 1.
One of the central components is the goal hierarchy housing higher level goals
including desires and important events. The goals may depend on each other in

Reaction

Plan

Goals

Percepts Actions

Library

Deliberation

Intentions
Reasoner\
BDI

Planning
ProcessHeuristic

Actions\

Fig. 1. Generic BDI architecture with a
planner. Planning is an activity of the
agent (filled circle) and produces new in-
tentions.

S G t

BDI

State−based planner

plan schema

plan schema

decomposition method

Fig. 2. Schematic illustration of a plan in
the hybrid system.

a forest like structure. This component includes the upper part of the intentional
structure of an agent and provides it with motivation and reason for action.

Goals are used by the BDI reasoner to chose among plan schemata and to cre-
ate the intentional structure. In object-oriented BDI frameworks plan schemata
stored in a plan library are defined by classes of plans. The intentional structure
is given by current plan instances. Another common component of the architec-
ture is a reactive subsystem. Triggered by belief changes or a percept, it generates
new goals for the reasoner. At the meta-level a goal deliberation process may
influence the reasoning and execution. The goal deliberation component analyses
dependencies among goals and modifies the intentional structure accordingly to
agent’s preferences.

4.1 Preparing a planning problem instance

For a specific goal the BDI reasoner may use the planner to create a dynamic
plan. This is done, whenever all existing plan schemata have failed or there is
an explicit preference for the planner specified in the agent description file(cf.
sec. 5). First an instance of a planning problem must be created. This requires
mapping of agent goals and beliefs to the specific planner representation. All
planner goals represent a distance measure defined over states with object-based
models described above. There is no BDI system, known to the authors, that
define goals as a distance measure with respect to different attribute types and
dimensions. The domain designer performs the mapping. This manual approach
utilizes the knowledge of the designer, who may provide adequate weights for
attribute dimensions and distance functions for goals that cannot be represented
in the object-attribute-value form.

In the planning process, the states are stored in a tree like database, that
may consist of a large number of states, each storing a subset of beliefs. For
planning being efficient in space and time only the relevant beliefs need to be
stored in a state. The choice of action schemata determines, which beliefs will

be changed, and which will remain unaffected by the process. Object instances
must be decomposed into their attributes in order to avoid copying solid objects
including not relevant attributes. In the prototype, this process is performed
manually, due to the complexity.

For example, in the loader dock scenario (cf. sec. 5) the position of a worker
and the packet being held by the worker change. They are affected by agent
actions and must be reflected in the state representation. On the other hand,
a domain time model stores movements of other workers and their different
positions with respect to time. The model is not affected by any actions and may
be accessed directly form the agent’s belief-base. In the blocks’ world example,
the relative position of a block is relevant for the planning process, but its color
remains unregarded.

The actions work directly on the state representation. The central point of
an action is the application method, including the applicability predicate and
transition functions for the stack of goals and object descriptions (cf. sec. 5). This
method summerizes all domain knowledge needed for planning with respect to
the action. A wide range of conditions and types of search control knowledge
may be specified this way. They are represented in the programming language
of choice. The same is true in respect to the effects of an action. It is possible to
derive this knowledge from already existing plan schemata of BDI systems, but
for concrete examples studied, it showed not to be sufficient to aid the planner in
an effective way. The actions are implemented in our approach by the application
designer. Heuristics reflect the desires of an agent regarding created plans. They
must be devised and implemented for the particular planning domain.

4.2 Planning and Execution

Prepared problem instances are handed to the planner and executed in a plan-
ning process like other agent’s plans. The planner delivers created plans directly
into the intentional structure and does not store them in a plan library. If plans
generated by the planner were general enough in their nature, the designer of
agent’s knowledge could also precompile such plans in advance. Because plans
are created at low-level, their parameters are tightly bound and they are appli-
cable only to a particular situation. Storing such plans in the plan library would
clutter it with instances used only once.

The resulting intentional structure may be seen in Figure 2. The upper frag-
ment contains a partially expanded branch of the BDI goal structure. One of
the goals has been assigned to the planner. It starts in the current state S and
uses a decomposition method to place intermediate points in the search space as
subgoals on the goal stack. The subgoals are removed from left to right as they
are achieved. The created plan is placed in the intentional structure for execu-
tion and has a BDI goal as the parent node. The lower sequence represents the
envisioned sequence of states, which should be attained at the execution time
successively.

In a dynamic environment, conditions change in an unexpected way. Mon-
itoring is an activity testing for the correct execution of a plan extending into

the future. This activity is controlled by the BDI system. In order to prove that
the remainder of a plan is correct it needs to be checked against the current
situation. A component similar to the planner is used to evaluate the remainder
in a simulated environment given by the planning domain. The simulator is a
greedy planner with the option generator replaced by an iterator over the plan’s
tail.

If the simulation or the execution of a plan step reports an error, the plan
is abandoned like a BDI plan instance. The goal responsible for invoking the
planner is still located in the intentional structure of the BDI agent. The BDI
reasoner may mark the goal with failure and abandon it or if the goal was
marked to retry plans, the planner will be asked again for a new plan. In this
respect, the planning process may be seen as a single agent plan schema or as
a presumably infinite set of plan instances. The choice is taken at the design
time and marked using BDI properties on agent goals specified in the agent
description. For example, in the loader dock the PickupPacket goal is excluded
on a plan failure (cf. sec. 5).

4.3 Managing plan failures

BDI execution engines have been devised under the assumption that the number
of plans for a goal is limited to a small number. Given the capability of a planner
to create an infinite number of plan instances, the BDI reasoning engine would
repeatedly instruct the planner to create plans even if there are no plans that
would achieve the goal. On the other hand, as the situation changes the planner
may find a plan in the future. There are four cases that need a decision on the
part of a BDI reasoner:

I. The planner cannot find any way to improve the agent’s situation. In this
case, it returns an empty plan with no actions. The BDI reasoner may wait
a specific time and retry finding a plan. The BDI goal is marked with a BDI
flag carrying the delay time between failed and new planning process.

II. The planner could not find a correct plan satisfying all goals and subgoals.
Following this plan would allow the agent to reach a state where the goals
are satisfied, but it could also lead it into a dead-end if the plan contains
irreversible decisions. On the other hand, the plan may be executed with
the hope that future planning, starting in a better situation, will find a
complete plan. The description of planning problem given to the planner,
should include a flag specifying if incomplete plans are allowed as a result.

III. The planner could not find a complete plan, because all of the time des-
ignated for planning has been used up. The time limit is specified in the
description of the planning problem given to the planner. If a plan cannot
be found because the problem exceed the planning horizon of an agent, an
incomplete plan will be returned that fits specified problem best. This case
can be handled the same way like case II.

IV. A number of correct plan instances is returned in successive trials but they
fail to reach the goal. In this case the domain description is too abstract

and lacks the knowledge needed by the planner to recognize specific reasons
for failure. For example, the speed of a robot depends on the load carried,
but domain designer specified constant speed. Such failures are seldom, but
must be accounted for in this design. When plans fail because of a more
demanding setting than the one stated in the domain description, a counter
on the goal for failed plans may be the most simple solution.

BDI systems with elaborate goal representation including failure and retrial
semantics [11], already offer the provisions to handle the cases at goal and plan
levels. The description of goals and the semantics of the reasoner may be ex-
tended to provide BDI flags described above. When goals are merely events
processed by the system this task can be delegated to an additional controller
component wrapping around the planner.

5 Examples

The planner presented in this paper has been implemented in the Javatm lan-
guage [12]. To evaluate it with a BDI framework it was integrated with Jadex
[13] – a BDI reasoning framework developed at the University of Hamburg.
Jadex incorporates many ideas from BDI-systems, like PRS [10] or Jacktm [14]
and provides new unique facilities to deal with goal deliberation.

Two domains have been designed and implemented to demonstrate the dy-
namics and reasoning capabilities of the hybrid system. In the standard blocks-
world example a simple but though propositional domain is used for testing.
The Loader Dock example contains a continuous and highly dynamic domain
demanding real-time performance.

5.1 Blocks’ World

The blocks-world domain is a standard testing domain for planners. The problem
consists of a bunch of blocks that must be moved into a final configuration. It
is one of the first problems investigated with planners and from the beginning
it has been a challenge as the problem is clearly exponential with respect to the
number of blocks used.

The control knowledge is borrowed from the TALPlanner [9] and adapted
to Javatm. The desire of an agent is to keep the number of moved blocks low.
The distance to a goal is the number of blocks in bad towers (i.e. towers of blocks
not conforming with the target state).

Figure 3 shows an implementation of the control knowledge in Javatm. Here
all the applicability predicate and transition functions are arranged together in
a single method. This way, the code is kept in one place and much of redundant
computation is abandoned.

For example, the control knowledge of PutToTable demonstrates the use of a
temporal condition. Whenever in the foregoing plan a block was placed already
on the table, the action is no more applicable to the state considered. This
assertion prevents blocks from being placed on table again and again.

public boolean applyTo(State state) {

Block block=(Block)state.get(LOAD);

if (block==null) return false;

State previous=state.getPrevious();

while(previous!=null) {

if (previous.get(DOWN, block)==null) return false;

previous = previous.getPrevious();

}

state.set(DOWN, block, null);

state.set(LOAD, null);

return true;

}

Fig. 3. Control knowledge for the PutToTable operator. A temporal condition assures
that a block is put to the table only once.

Using global search with an agenda of 10, it requires about 10 seconds on an
i586 400MHz machine to stack 100 blocks. These results are not surprising as
the planner has been build upon reliable and approved planning techniques. It
compares well with the state of art planners (cf. [8]).

5.2 Loader Dock

In the loader dock several workers wander around or carry packets between
incoming trucks and the shelves. Their job is to unload packets from a full
truck, or to deliver packets to an empty one, whenever trucks arrive at the store.
The dock itself contains shelves where packets can be placed temporally. The
shelves are separated by corridor ways, which are used by workers to transport
the packets (cf. fig. 4).

This particular domain is fully observable in respect to a certain update
interval. This update of mutual beliefs that is performed by the store agent. It
is almost deterministic because agents cannot be sure if created plans will be
executed in time as they predicted. The environment changes because of other
agents and processes. This includes trucks coming in and going out at various
time intervals. Most quantities, like the number of packets, trucks, workers and
places, are finite, but attributes of domain objects like speed, direction, arrival
and departure time are real valued. There are many processes and agents acting
in this domain concurrently. Agents do have common goals to handle the job at
the storehouse, but share resources like time and corridor space. The storehouse
depicted in Figure 4 is modeled using a discrete grid of points connected with
each other through pathways. Workers and packets can take any position in the
store and may head towards any real valued direction.

Planning takes very little time for this small domain. The approximate time
of path planning on an i686 3GHz machine is from 1ms to 10ms. Because way
points in the grid are static, all movement actions are precomputed in advance,
which speeds the planning process.

Fig. 4. The graphical interface of the loader dock example.

When a worker makes an intention to move somewhere, it communicates
this intention to other ones for the purpose of coordination. A trajectory of the
movement, described by points and exact time-values, is sent to each worker, so it
can update its beliefs about future changes in the environment. This information
is stored in a domain time model representing the beliefs concerning prospective
workers’ positions. This information guides the planning process of each worker,
so none of them intersects a path of another.

Goals to load or unload truck packets are distributed using the FIPA Con-
tract Net Interaction Protocol [15]. Such a goal contains packet identification and
a deadline. The worker responding with the fastest plan schema wins and com-
mits to the execution. Other workers are informed about this intention. Figure 5
demonstrates a pickup goal. It represents a condition, where the agent is carrying
a packet. exclude="when failed" requests the BDI reasoner not to start the
planner again after the initially created plan fails. The deliberation section tells
the reasoner to suspend pursuing other goals with types: Go, PickupPacketC,

PutdownPacketC. It prevents an agent from trying to go in different directions
and to respond to calls for proposals, while processing this goal. The goal repre-
sents the BDI sphere of responsibility. It contains the provisions, as mentioned
earlier, for re-planning (specified with flags), deliberation and monitoring (using
the target condition).

A corresponding planning domain is specified in Figure 6. The planning pro-
cess takes place in an instance of PickupPlan triggered by a PickupPacket goal.
This part of the agent description file (ADF) specifies the responsibility of the
planning component. Searching for the best plan to pickup a packet is done using
a global search strategy. In order to confine the planning horizon the planning

<achievegoal name="PickupPacket" exclude="when_failed">

<parameter name="packet" class="Packet"/>

<deliberation cardinality="1">

<inhibits ref="Go"/>

<inhibits ref="PickupPacketC"/>

<inhibits ref="PutdownPacketC"/>

</deliberation>

<targetcondition>$beliefbase.packet!=null</targetcondition>

</achievegoal>

Fig. 5. Specification of the PickupPacket goal.

agenda is limited to 200 planning alternatives and the time given to the planner
is 2000 ms. By default the planner should return correct plans only. The heuristic
used expresses agent desire for plans taking less time to execute. The operator
MoveOp changes the position of a worker and the operator PickupOp picks up
the packet specified in the goal.

<plan name="pickup" search="global" agenda="200" time="2000">

<body>new PickupPlan()</body>

<trigger>

<goal ref="PickupPacket"/>

</trigger>

<heuristic>new TimeHeuristic()</heuristic>

<operator>new MoveOp($to)</operator>

<operator>new PickupOp()</operator>

</plan>

Fig. 6. Specification of the Pickup plan.

The use of a planner at the operational level helped worker agents to plan
their activities and coordinate among themselves by communicating their in-
tentions. They were successful to plan in a dynamic cooperative scenario with
discrete and continuous resources. The BDI part has been effectively applied to
control the dynamics of execution and has kept constraints over goals satisfied.
The hybrid system has remained reactive and was able to adapt to different load
factors.

6 Related Research

Architectures with strong emphasis on artificial intelligence include a planning
component as their central part. An example system designed with BDI and
planning in mind is InterRRaP [16]. It includes a local planning layer utilizing
a hierarchical planner. The representation of procedures and goals follows that
of a hierarchical task network (HTN) planner and has a declarative form. In the
layered architecture, the planner takes control over a reactive subsystem.

The topic of joining procedural BDI reasoning engines with decision theoretic
planners is not new. System have been built that proved especially useful in do-
mains featuring enough time for planning, like in the example of Propice-Plan
[17] featuring a blast furnace domain. Propice-Plan extends the dMars system
with a state based planner IPP. Cypress is a system composed of the hierar-
chical planner Sipe-2 upon the Procedural Reasoning System (PRS) [10] also
following a layered approach. Both systems are glued together with The ACT
Formalism [18].

In the work of De Silva [19] a hierarchical planner JSHOP [20], is used to
produce plans for the JacktmBDI system. Domain descriptions for the planner
are created from the BDI plan schemata at compile time. The approach limits
the programmer to a subset of possible programming solutions given by the
intersection of the planning language and the BDI language and their possible
transformations. It is also unclear, how to generalize this approach to a wider
class of BDI systems.

BDI representation of agent internal mental states states can be mapped
to the Strips [21] notation forth and back [22]. This has been done on an
abstract BDI interpreter called X-BDI [23] and augmented with GraphPlan.
The mapping is a structure transformation of beliefs, desires and intentions into
a propositional notation that is used by the planner so beliefs and actions are
constrained by the propositional Strips domain representation.

These approaches aimed at technical or theoretical feasibility. There was no
concern about generality or performance. In our opinion, they are not well ap-
plicable to planning of low-level control tasks. GraphPlan and IPP are generic
state-based planners using generic heuristics. The range of problems solved by
these planners is limited and they are overpowered by planners applying do-
main specific knowledge [8]. They require to state the planning problem declar-
atively as a set of propositions. Object-based domain modeling approaches fit
better with newer BDI frameworks designed in object-oriented languages such
as Jacktm [14] or Jadex [13].

Sipe-2 and InterRRaP planning layer use hierarchical decomposition in
the space of partially ordered plans. The use of this planning space gives more
degrees of freedom to the planner. The choice of such an algorithm has to be
carefully elaborated. It is generally not the question, how to give the agent all
the possible options, but how to restrict the choice to a minimal subset that
needs to be considered. In fact, this is one of the advantages of BDI systems
that constrain the options to a small number precompiled plan schemata. BDI
systems also use deliberation and filtering techniques to further decimate the
choices.

7 Conclusion

We have investigated the composition of a deliberative planner with a BDI frame-
work forming a new hybrid system with combined characteristics. The use of a
state-based planner on a planning problem extended by BDI concepts space

allows to easily merge those two paradigms. Implementing the planner in an
object-oriented language and representing the planning domain with object-
based models further facilitates the integration with BDI frameworks devised
with such concepts in mind. The main requirement for the planner was per-
formance at the low-level of execution. The planning problem representation
included many places for application of domain specific knowledge including
action preconditions, goal distance functions and utility functions.

Further an integration schema was proposed, where the BDI system is used
as system controller responsible for the upper part of the intentional structure.
It uses a deliberative planner in situations where precompiled plans are hard to
devise in advance. In this schema the planner performs short term planning and
produces plans with a constructed proof of correctness. The resulting plans are
handed directly to the scheduler. Four cases have been identified that require
changes in the semantics of goal handling in the BDI framework. These situation
may trigger a re-planning process in order to create plans that better suit the
problem on hand.

The approach has been verified in a puzzle domain to test the scalability
of the planner showing comparable results with existing planning systems. The
whole hybrid system has been investigated on the basis of the loader dock sce-
nario. Here multiple agents had to plan their way through a packet store and
coordinate their activities in order to cope with the load introduced by trucks
coming in and going out. Worker agents could handle this domain because their
intentional structure has been completed by plans created at runtime. On the
other hand, the BDI reasoning could retain its reactive and deliberative charac-
teristic.

The future of this work includes advances on the part of the planner. Tech-
niques should be investigated to include concurrent planning and planning under
uncertainty and embed it into a BDI reasoning framework. We anticipate that
development of complex planning domains would require modeling and debug-
ging tools. The abstraction given by knowledge representation is particularly
important to this planning approach. Techniques for the representation of plan-
ning domains should be used to facilitate it.

References

1. Georgeff, M.P., Pell, B., Pollack, M., Tambe, M., Wooldrige, M.: The belief-desire-
intention model of agency. In: Intelligent Agents, 5th International Workshop,
ATAL’98. Springer, Paris (1998) 1–10

2. Bratman, M.E.: Intention, Plans, and Practical Reason. Harvard University Press,
Cambrige, MA (1987)

3. De Silva, L., Padgham, L.: A comparison of BDI based real-time reasoning
and HTN based planning. In: AI 2004: Advances in Artificial Intelligence, 17th
Australian Joint Conference on Artificial Intelligence, Cairns, Australia, Springer
(2004) 1167–1173

4. Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical
reasoning. Computational Intelligence 4 (1988) 349–355

5. Pokahr, A., Braubach, L., Lamersdorf, W.: A goal deliberation strategy for BDI
agent systems. In: Third German conference on Multi-Agent System TEchnologieS
(MATES-2005). (2005)

6. Shut, M., Wooldridge, M.: The control of reasoning in resource-bounded agents.
The Knowledge Engineering Review 16(3) (2001)

7. Ghallab, M., Nau, D., P.Traverso: Automated Planning: Theory and Practice.
Morgan Kaufmann Publishers (2004)

8. Edelkamp, S., Hoffmann, J., Littman, M., Younes, H.: The 4th international plan-
ning competition 2004 (IPC-2004) (2004) Hosted at the International Conference
on Automated Planning and Scheduling 2004 (ICAPS-2004).

9. Kvarnström, J., Magnusson, M.: TALplanner in IPC-2002: Extensions and control
rules. Journal of Artificial Intelligence Research (JAIR) 20 (2003) 343–377

10. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning: An experiment
with a mobile robot. In: Proceedings of the sixth National Conference on Artificial
Intelligence (AAAI-87), Seattle, Washington (1987) 677–682

11. Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal representation for
BDI agent systems. In: The Second International Workshop on Programming
Multi Agent Systems. (2004) 9–20

12. Walczak, A.: Planning and the belief-desire-intention model of agency. Master’s
thesis, University of Hamburg (2005)

13. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In
Bordini, R., Dastani, M., Dix, J., Seghrouchni, A., eds.: Multi-Agent Programming,
Kluwer Academic Publishers (2005)

14. Busetta, P., Ronnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agent -
components for intelligent agents in Java (1999)

15. FIPA: FIPA Contract Net Interaction Protocol Specification. FIPA. (2001)
16. Fischer, K., Müller, J.P., Pischel, M.: Unifying control in a layered agent architec-

ture. Technical Report TM-94-05, Deutsches Forschungszentrum für Künstliche
Intelligenz GmbH, Kaiserslautern, DE (1994)

17. Despouys, O., Ingrand, F.F.: Propice-plan: Toward a unified framework for plan-
ning and execution. In Biundo, S., Fox, M., eds.: Recent Advances in AI Planning,
5th European Conference on Planning, ECP’99, Durham, UK, Springer (1999)
278–293

18. Wilkins, D.E., Myers, K.L., Wesley, L.P.: Cypress: Planning and reacting un-
der uncertainity. In Burstein, M.H., ed.: ARPA/Rome Laboratory Planning and
Scheduling Initiative Workshop Proceedings. Morgan Kaufmann Publishers Inc.,
San Mateo, CA (1994)

19. De Silva, L., Padgham, L.: Planning on demand in BDI systems. In: International
Conference on Automated Planning and Scheduling, Monterey, California (2005)

20. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, W., Wu, D., Yaman, F.:
SHOP2: An HTN planning system. Journal of Artificial Intelligence Research 20
(2003) 379–404

21. Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3–4) (1971) 189–208

22. Meneguzzi, F.R., Zorzo, A.F., da Costa Móra, M.: Propositional planning in BDI
agents. In: Proceedings of the 2004 ACM symposium on Applied computing, ACM
Press (2004) 58–63

23. Móra, M.C., Lopes, J.G., Viccari, R.M., Coelho, H.: BDI models and systems:
Reducing the gap. In: Proceedings of the 5th International Workshop on Intelligent
Agents, Springer (1999)

