
A Flexible BDI Architecture Supporting Extensibility

Alexander Pokahr, Lars Braubach, Winfried Lamersdorf
Distributed Systems and Information Systems

Computer Science Department, University of Hamburg

{pokahr | braubach | lamersd}@informatik.uni-hamburg.de

Abstract

The BDI agent model comprises a simple but efficient
folk psychological framework of mentalistic notions usable
for modeling rational agent behaviour. Nevertheless, de-
spite its usefulness it is also a popular subject for extensions
that try to improve the model in certain uncovered aspects
such as emotions or norms. On the architectural level the
BDI model is typically represented by an abstract BDI inter-
preter, which implements the fixed BDI reasoning cycle. In
this paper it is argued that a fixed cycle has certain inherent
drawbacks and that a transition towards a flexible agenda
approach based on BDI meta-actions leads to a design open
for extensions in many respects because new meta-actions
can be easily integrated into the architecture on demand.
To prove the validity of the approach, it is shown how the
extensibility can be exploited to integrate concrete new as-
pects of increasing complexity into the model. They range
from a simple mechanism for updating beliefs to a complex
goal deliberation strategy and demand only slight modifi-
cations at well-defined extension points of the architecture.
The new architecture as well as the presented extensions
have been realized within the open source Jadex BDI rea-
soning engine.

1. Introduction

The Belief-Desire-Intention (BDI) model was conceived
by Bratman as a theory of human practical reasoning [2].
Its success is based on its simplicity reducing the explana-
tion framework for complex human behaviour to the mo-
tivational stance [6]. In this model, causes for actions are
only related to desires ignoring other facets of cognition
such as emotions. Another strength of the BDI model is the
consistent usage of folk psychological notions similar to the
way people communicate about human behaviour [17].

Even though BDI systems are used with considerable
success in practice [13, 15] the BDI mechanism responsi-
ble for agent behaviour is simplistic in nature and hence

cannot address many generic aspects of human behaviour
and reasoning [17]. For this reason several different direc-
tions exist trying to extend the original model in various as-
pects. Thereby, the approaches can be coarsely subdivided
into two subfields on the one hand aiming at improving
the internal reasoning process and on the other hand ex-
tending BDI in the context of the agent’s social environ-
ment. One direction of the former concerns the integration
of emotions and BDI such as the TABASCO architecture
[22]. Other approaches consider BDI and learning mech-
anisms [9] or the enhancement of goal representation and
processing within the BDI architecture [4]. The second sub-
field treats teamwork issues addressed by architectures such
as SimpleTeams [10] and the impact of sociological con-
cepts like norms and obligations, e.g. within B-DOING [7].

To be implemented, all aforementioned kinds of ap-
proaches need to customize the BDI architecture to a greater
or lesser extent. Therefore, extensibility of the BDI model is
a crucial factor and should be reflected by a BDI architec-
ture as well. The most prominent BDI architecture is rep-
resented by the abstract BDI interpreter (cf. Section 2.1),
which defines a fixed control loop for the execution of agent
behaviour. This approach has two main drawbacks:

First, the concrete layout of the cycle within the inter-
preter determines to a certain degree the agent’s nature, e.g.
it decides if an agent is cautious and reconsiders its choices
often or if it is rather blindly-committed to its decisions.
E.g. in [26] Wooldridge presents different versions of BDI
interpreter cycles for blindly committed, single-minded and
open-minded agent types and in [14] Kinny et al. show that
the degree of the environmental dynamics influences the ef-
fectiveness of the different agent types. Hence, the defini-
tion of a general applicable interpreter cycle is extraordi-
narily difficult if not impossible, cf. Dastani et al. who say:
“We assume that there is no unique (rational or universal)
deliberation process and that the deliberation process can
be specified in various ways” [5].

Second, a predefined interpreter cycle does not offer any
apparent extension points for the integration of additional
reasoning facilities, making it even more troublesome if

several extensions need to be done. The BDI cycle pre-
scribes that the reasoning process always is executed in a
step by step manner of handling events, executing plan ac-
tions and finally updating mental structures. In this paper it
is claimed that such a fixed cycle is very restrictive and ren-
ders extensions of the model hard to realize. Therefore, a
more flexible way of mapping the BDI model to an archi-
tecture is proposed.

The remainder of this paper is structured as follows: In
Section 2 an enhanced BDI architecture designed for ex-
tensibility is presented. To show the benefit of this flexibil-
ity some extensions of the BDI architecture are presented
in Section 3. Section 4 describes how the basic interpreter
as well as the proposed extensions have been realized in the
open source Jadex BDI reasoning engine. The paper con-
cludes with a summary and an outlook on future work.

2. A Flexible BDI Interpreter

Foundation for the new architecture is the original ab-
stract BDI interpreter, what means that all functionalities
from the classical approach are also incorporated into the
new design. Therefore, the new approach is fully backwards
compatible and does not change the way BDI agents can be
programmed but only the way they are internally executed.
In addition, it is construed to be very extensible allowing
new facets being integrated into the architecture.

2.1. Original BDI Interpreter

Algorithm 1 Original BDI-interpreter, taken from [20]
01 initialize-state();
02 repeat
03 options := option-generator(event-queue);
04 selected-options := deliberate(options);
05 update-intentions(selected-options);
06 execute();
07 get-new-external-events();
08 drop-successful-attitudes();
09 drop-impossible-attitudes();
10 end repeat

The BDI theory of Rao and Georgeff [20] defines beliefs,
desires, and intentions as mental attitudes represented as
possible world states. The intentions of an agent are subsets
of the beliefs and desires, i.e., an agent acts towards some of
the world states it desires to be true and believes to be possi-
ble. To be computationally tractable Rao and Georgeff also
proposed several simplifications to the theory, the most im-
portant one being that only beliefs are represented explic-
itly. Desires are reduced to events that are handled by pre-
defined plan templates, and intentions are represented im-
plicitly by the runtime stack of executed plans.

Figure 1. Identified meta-actions

The resulting abstract interpreter loop (see Alg. 1) cap-
tures the essence of early PRS systems [12] and is still the
foundation for most current BDI-systems like JACK [11]
and Jason [1]. Main task of the interpreter is to find and ex-
ecute plans matching the given events and goals (lines 3-4).
Afterwards, selected plans are executed (lines 5-6) and af-
fected attitudes are updated accordingly (lines 8-9).

2.2. From Steps to Meta-Actions

In general, every agent architecture can be specified in
terms of the agent state and the allowed state transitions.
Given that an agent state is usually composed of cleanly
separated elements such as beliefs, goals, and plans, the
agent state can be easily extended by adding additional
components (e.g. obligations) or by augmenting existing
components (e.g. introducing context conditions for goals).
The difficult part when extending the BDI (or some other)
agent architecture, is to respect this new state information
in the allowed state transitions. This might imply changing
the architecture in one or more of the following ways: In-
troducing new state transitions, restricting/removing exist-
ing state transitions, or extending existing state transitions
to also cope with newly introduced information.

From a software-engineering point of view it is desir-
able to minimize changes to existing transitions, when ex-
tending the architecture. On the one hand, because the be-
haviour of agents following the original architecture should
remain the same (backwards compatibility). On the other
hand, when realizing the extended architecture in an exist-
ing agent framework, only local changes have to be made
to the code. The question is then: Which set of state tran-
sitions should be used to represent a flexible BDI architec-
ture?

We claim that for an extensible agent architec-
ture, software-engineering principles such as high cohe-
sion and low coupling should be respected when defining
a set of state transitions. The steps of the original inter-
preter already identify more or less separate functionality,
and can be used as a starting point. The basic idea of the ar-

2

Figure 2. Interpreter architecture

chitecture is to break up the original abstract BDI inter-
preter cycle into a small set of self-contained meta-actions,
which are invoked as needed, rather than being exe-
cuted in a fixed sequence. Instead of generic steps oper-
ating on global data structures (like the execute() opera-
tion from line 6 in Alg. 1) these actions are instantiated on
demand and include the exact elements on which to oper-
ate (e.g. the intention or plan step to execute). Fig. 1 shows
the identified actions (dark rectangles) and introduces ab-
stract actions (light rectangles) as well as inheritance rela-
tionships (arrows) to group similar actions. The names of
the corresponding original interpreter steps are given be-
low the action names.

2.3. Interpreter Architecture

The set of meta-actions forms the basis of the new in-
terpreter architecture. Abandoning the view that all actions
are executed as steps of a fixed interpreter cycle, the ques-
tion arises how can be decided which action to execute next,
and also, when should new actions be instantiated.

The basic mode of operation of the proposed interpreter
is depicted in Fig. 2 (left hand side). The interpreter is based
on a data structure called Agenda where all actions to be
processed are collected. The interpreter continuously se-
lects the next entry from the agenda and executes it, thereby
changing the internal agent state. The execution of an ac-
tion may lead to the creation of new actions (direct effects),
which are then inserted into the agenda. In addition, certain
occurrences may render the execution of already scheduled
actions obsolete, e.g. an execute plan step action for a mean-
while dropped goal should not be performed. Hence, a pre-
condition can be assigned to an action ensuring that obso-
lete actions are removed from the agenda.

The operation of the interpreter is first described inde-
pendently of the details of concrete meta-actions and there-
fore different to BDI interpreter descriptions such as [19],
in which the operation is primarily described in terms

of a given set of basic actions. This paper does not in-
tend to provide a complete operational semantics of the
proposed architecture, but only highlights the impor-
tant aspects. An agent state σ ∈ Σ is defined as a tu-
ple 〈B, Γ, Π, A〉, where B is a set of beliefs, Γ is a set of
adopted goals, Π is a set of plans, and A is a set of sched-
uled agenda actions {α, α′, . . .}. An agenda action is a
tuple 〈τ, ϕ1, ϕ2, . . .〉 with τ , an action type (e.g. ProcessEv-
ent or ExecutePlanStep), and ϕ1, ϕ2, . . ., parameters (type
and number depending on the action type). For each ac-
tion type, we introduce ppre, fB , fΓ, fΠ, feff , which are
characterising functions defined over A × Σ. The pre-
condition ppre determines if the action is valid in the
current context, the transition functions fB , fΓ, fΠ de-
scribe the changes in the beliefs, goals, and plans respec-
tively, and the effect function feff determines a set of sub-
sequent actions, which have to be added to the agenda.
Note that it is not possible for an action to directly re-
move other agenda actions.

As result of the state transition caused by applying an
agenda action α (written as σ

α−→σ′ with σ = 〈B, Γ, Π, A〉,
α ∈ A and σ′ = 〈B′, Γ′, Π′, A′〉), we get

B′ = fB(α, σ), Γ′ = fΓ(α, σ), Π′ = fΠ(α, σ),

A′ = A \ {α} ∪ feff (α, σ).

Note that actions are only performed when the precondition
ppre is valid. When the precondition does not hold, the ac-
tion is dropped (B, Γ, Π stay unchanged and A ′ = A\{α}).

To allow flexible extension of the architecture, the cre-
ation of new agenda actions should not only depend on the
direct effects feff (α, σ) of existing actions. E.g. to intro-
duce creation conditions for goals, we do not want to change
all actions that might possibly change the agent’s beliefs.
We therefore introduce the notion of side-effects, which are
agenda actions, created due to changes in the agent state
(see Fig. 2, right hand side). More formally, we define the
side-effect function, which operates only on the changed be-
liefs, goals, and plans fside−eff (B′, Γ′, Π′) and determines
additional actions to be added to the agenda. This leads to:

A′ = A \ {α} ∪ feff (α, σ) ∪ fside−eff (B′, Γ′, Π′)

External sources may also add entries to the agenda, such
as messages that have been received from other agents and
need to be processed. The state transition of adding such
an externally created action α′ to the agenda is unrelated
to the execution of other actions, and therefore does not al-
ter the other components of the agent state (i.e. B ′ = B,
Γ′ = Γ, Π′ = Π, and A′ = A ∪ {α′}).

Finally, a selection function fsel(A) is introduced (see
Fig. 2), which is used by the interpreter to determine the
next action to execute. As all scheduled actions have to be
performed sooner or later, this selection does not represent

3

a choice, but just an ordering. Therefore no complex rea-
soning is required, and simple strategies such as first-come-
first-served can be applied. The basic operational model
presented above already represents the complete interpreter.
The details of the BDI architecture are realized as a set of
self-contained meta-actions as described next.

2.4. Definition of Basic Meta-Actions

To further clarify the interpreter operation, we show
how the basic actions (plan selection and execution) of a
BDI agent are defined. Plan selection is implemented in
the actions FindApplicableCandidates, SelectCandidates,
ScheduleCandidates. Plan execution is done by the Exe-
cutePlanStep action (cf. Fig. 1). The plan set Π of the agent
may contain plan templates pt as well as plan instances
given by π = 〈pt, ε, μ〉, where ε is an event to handle (or
⊥ if currently none), and μ is a counter (metrics) specify-
ing the next step of the plan.

The 〈FindApplicableCandidates, ε〉 action αfac pro-
duces a list of applicable plans for a given event ε. The ef-
fect of this action (leaving the beliefs, goals, and plans un-
changed) is:

feff (αfac, σ) = {〈SelectCandidates, ε, Πapp〉}
Thereby Πapp = fapp(Π, ε) are the applicable plans for the
event ε derived from the current plan set Π. Of the plan in-
stances, only those are considered which do not currently
have an event to handle (i.e. 〈pt,⊥, μ〉).

The 〈SelectCandidates, ε, Πapp〉 action αsc subse-
quently selects one or more plan templates or plan instances
from the list of applicable plans. The effect of this ac-
tion is therefore:

feff (αsc, σ) = {〈ScheduleCandidates, ε, Πcan〉}
with Πcan = fsel(Πapp, ε) calculated by a plan selection
function. For selected plan templates pt, the function re-
turns a new plan instance π = 〈pt,⊥, 0〉.

The 〈ScheduleCandidates, ε, Πcan〉 action αschc up-
dates all selected plan instances π ∈ Πcan to include the
event to be handled, thereby adding newly created plan in-
stances to the plan set. Additionally, for each selected plan
instance an ExecutePlanStep action is added to the agenda:

fΠ(αschc, σ) = Π \ Πcan ∪ Πsched

feff (αschc, σ) = {〈ExecuteP lanStep, π〉 |π ∈ Πsched}
with Πsched = {〈pt, ε, μ〉 | 〈pt,⊥, μ〉 ∈ Πcan}

Executing a plan step might change any aspect of the
agent, depending on the code contained in the plan. Without
going into details we represent those plan-induced changes
using the transition functions fBπ, fΓπ, fΠπ defined over

Π × Σ. The functions are applied to the current state (i.e.
B′ = fBπ(π, σ) and Γ′ = fΓπ(π, σ)). Additionally, the
plan step counter of the plan instance is incremented by 1,
and a new ExecutePlanStep action is added:

fΠ(αeps, σ) = fΠπ(π, σ) \ {π} ∪ {π′}
feff (αeps, σ) = {〈ExecuteP lanStep, π′〉}
with π = 〈pt, ε, μ〉 and π′ = 〈pt, ε, μ + 1〉

In case the processing of the event is finished (indicated by
a plan by waiting for a different event to process), the transi-
tion is slightly different, because the event is removed, and
the plan does not have to be rescheduled:

π′ = 〈pt,⊥, μ + 1〉 , feff (αeps, σ) = ∅

3. Example BDI Extensions

In this section it is shown, how the presented architec-
ture can be used to introduce extensions. Three cases of in-
creasing complexity will be outlined.

3.1. Updating beliefs

For automatically refreshing the value of a belief that
is e.g. connected to some sensor a new action αub =
〈UpdateBelief, β,�t〉 is introduced. It consists of the Up-
dateBelief action type and parameters for the specification
of the belief and the update interval. As precondition for
this action it is required that the belief is defined within the
agent ppre−ub = pis−defined(αub, σ), i.e. the belief will not
be updated if it is currently unknown by the agent, e.g. when
the belief is removed by some plan at runtime. The results
of an executed action are that the belief value is updated

fB(αub, σ) = B \ {β} ∪ {β′} , with β′ = fub(β)

and that a new update belief action is added to the agenda

feff (αub, σ) = {α′
ub}, with α′

ub = 〈UpdateBelief, β′,�t〉
Note that the interpreter selection strategy has to ensure that
only due actions are selected for execution. The action does
not affect the agent’s goals and plans (i.e. Γ ′ = Γ,Π′ = Π).

3.2. Representing and Handling goals

In the original abstract BDI architecture [20] and most
current implementations [1, 11] goals are represented only
in the transient form of goal events. This implicit represen-
tation in combination with a purely procedural realization
of goals was criticized because it hinders the agent in rea-
soning about its goals as no declarative information such as
the goal’s achievement state is available [4, 23, 25]. Hence,

4

Figure 3. Goal lifecycle (adapted from [4])

an explicit representation of goals for BDI agent systems
was conceived in [4]. In short, it consists of a generic goal
lifecycle (cf. Fig. 3) for all supported goal types (perform,
achieve, query, maintain) that exactly describes the states
and transition relationships of goals at runtime. Adopted
goals can be in either of the substates Option, Active or Sus-
pended, whereby only active goals are currently pursued by
the agent. The set of adopted goals is the union of the dis-
junctive sets of options, active and suspended goals Γ =
Γo ∪Γα ∪Γσwith Γo ∩Γα = Γo ∩Γσ = Γα ∩Γσ = ∅. Op-
tions and suspended goals represent inactive goals, where
options are inactive, because the agent explicitly wants them
to be, e.g. because an option conflicts with some active goal.
In contrast, suspended goals currently must not be pursued,
because their context is invalid. They will remain inactive
until their context is valid again and they become options.

Additionally, some basic properties common to all goal
types have been defined. Among those the most important
ones are: A creation condition that defines when a new goal
instance is created; a context condition that describes when
a goal’s execution should be suspended (to be resumed
when the context is valid again); and a drop condition that
defines when a goal instance is removed. Whenever such
a condition triggers at runtime a corresponding goal meta-
action is instantiated and inserted into the agenda, i.e. the
state transitions are triggered as side-effects of the agenda
execution from the formerly introduced function f side−eff .

A goal γ ∈ Γ is defined as a tuple 〈gt, s〉 with gt be-
ing the user defined goal template in which creation, con-
text and drop condition among other things are specified and
s ∈ {option, active, suspended} being the actual state of
the goal. For simplicity reasons other aspects of goals such
as parameter values are not considered here.

For being able to handle a firing creation condition the
new create goal action αcg = 〈CreateGoal, gt〉 is intro-
duced. It is composed of the CreateGoal action type and
the goal template gt as a parameter. Thereby, the goal tem-
plate serves as model for goal creation, i.e. it contains rele-
vant information for the created instance. The action is al-
ways applicable, i.e. the precondition is always true and it

does only change the agent’s goal state (B ′ = B, Π′ = Π)
by adding the new goal instance to the agent’s set of goals.

fΓ(αcg, σ) = Γ ∪ {γ} , with γ = fcreate(gt)

If the context condition of a goal triggers, two different
cases with respect to its state have to be considered. For
both cases the same action αsc = 〈SwitchContext, γ, s′〉
is used. It consists of the SwitchContext action type, the
goal and the target state s′ ∈ {option, suspended}, which
is used to indicate whether the goal should be suspended
(invalid context) or should be made an option (valid con-
text). The action requires as precondition that the goal is
not already in the target state ppre−sc = (s
= s′) with
γ ∈ Γ, γ = 〈gt, s〉. The application of the action leads to a
changed goal state:

fΓ(αsc, σ) = Γ \ {γ} ∪ {γ′} with γ′ = 〈gt, s′〉
Finally, the dropping of an adopted goal is considered.

The action αdg = 〈DropGoal, γ〉 is composed of the Drop-
Goal action type and the goal to drop. Its precondition is al-
ways valid as only adopted goals γ ∈ Γ are considered for
dropping. As effect the goal is simply not contained in the
set of adopted goals any longer:

fΓ(αsc, σ) = Γ \ {γ}

3.3. Goal Deliberation

A well-known deficiency of the classical BDI model and
architecture is the assumption that an agent can only posses
consistent goals. It means that a BDI agent has no means for
detecting whether some of its active goals interfere, lead-
ing to irrational behaviour. A typical example for such be-
haviour is a robot pursuing two movement goals with differ-
ent target locations at the same time generating continuous
to and fro. The consistency assumption is absolutely unreal-
istic as typical application scenarios involve a lot of differ-
ent goals that interfere with each other either positively or
negatively. Therefore in current BDI systems the agent pro-
grammer has the tedious and error-prone task to synchro-
nize the agent’s goals at the application level.

At this point goal deliberation strategies come into play.
Such strategies are conceived to alleviate the goal arbitra-
tion task by shifting it from the application to the archi-
tecture level and by providing systematic means for speci-
fying the interrelationships of goals and plans. This infor-
mation is then used to detect interdependencies at runtime
and preserve a consistent mental state. Currently, there is
no consensus about how goal deliberation should be done
and only a few approaches exist at all (e.g. [24]). In the fol-
lowing, it will be shortly sketched how a goal deliberation
strategy called Easy Deliberation can be incorporated into
the architecture. The strategy is based on ideas from goal

5

modeling as can be found in the agent methodology Tro-
pos [8] and the requirements engineering technique KAOS
[16], which both propose directed contribution links be-
tween goals. Two main concepts are used to describe de-
liberation information within goal type declarations: car-
dinalities and inhibition arcs. Cardinalities can be used to
constrain the maximum number of active goals of a spe-
cific type at runtime, whereas inhibition arcs are used to de-
clare negative contribution relationships between two goals.

Generally two different situations can arise, in which de-
liberation becomes necessary (cf. Fig. 3): First, a goal can
become an option either when a new goal is adopted or
when the context of a suspended goal becomes valid again.
In these cases the deliberation process needs to decide if the
new option can be activated and additionally what the con-
sequences of the activation are, i.e. which other active goals
need to be deactivated to avoid having conflicting goals (1:
Deliberate new option). Second, an active goal can become
inactive when it gets suspended, finished or dropped. In this
case, the deliberation has to determine which options have
been possibly inhibited by the deactivated goal. For each
of these options it needs to be checked if it can be reacti-
vated (2: Deliberate deactivated goal).

The Deliberate new option meta-action αdno =
〈DeliberateNewOption, γ〉 is responsible to perform
the activation of one option γ ∈ Γ, γ = 〈gt, s〉 if possi-
ble. The precondition has to verify that the goal currently is
an option ppre−dno = (s = option). The effects of the ac-
tion depend on the deliberation outcome given by the
predicate pactivate(γ). Only if it evaluates to true the ac-
tivation is performed by making the option to an active
goal and by making all inhibited active goals to op-
tions. The set of inhibited goals is calculated with the
inhibition function finhibit(γ, γx).

fΓ(αdno, σ) = Γ \ {γ} ∪ {〈gt, active〉} \ Γinh ∪ Γopt

with Γinh = {γx ∈ Γα | finhibit(γ, γx)}
and Γopt = {〈gt, option〉 | 〈gt, s〉 ∈ Γinh}

The DeliberateDeactivatedGoal meta-action
αddg = 〈DeliberateDeactivatedGoal, γ〉 is used to
find out which current options could benefit from the de-
activated goal γ ∈ Γ, γ = 〈gt, s〉. Precondition for
this action being executed is that the goal still is not ac-
tive ppre−ddg = (s
= active), i.e. it was not reactivated in
the meantime. As result of performing this action new De-
liberateNewOption actions are produced for every option
for which the deactivated goal was a necessary condi-
tion being not activated.

feff (αddg, σ) = {〈DeliberateNewOption, γx〉 | γx ∈ Γinh}
with Γinh = {γx ∈ Γo | finhibit(γ, γx)}

More details of the Easy Deliberation strategy can be
found in [18].

4. Interpreter Realization

The presented interpreter architecture has been real-
ized in the Jadex BDI reasoning engine [3]. To follow
the agenda-based execution model the Jadex reason-
ing engine has been extensively restructured. The core
of the proposed architecture is realized within a compo-
nent that is responsible for fetching and executing new
meta-actions from the agenda whenever available. Com-
ponents previously used in Jadex e.g. for plan selection
and execution have been refactored to provide the ba-
sic set of required meta-actions.

All meta-actions are realized as separate Java classes im-
plementing a common interface, which contains the precon-
dition ppre in form of an isValid() method. As the system is
realized in an imperative language, the transition functions
fB , fΓ, fΠ, feff are not represented separately, but merged
into an execute() method, which performs the required state
change. During action execution, the system automatically
collects state changes which are used for the determina-
tion of side-effects. The side-effect function fside−eff is im-
plemented as a simple rule-base, where for each action the
triggering condition is specified. When the condition holds
after a state change, the corresponding action is added to
the agenda. In case of arriving messages or internal timing
events (that trigger e.g. belief updates or goal retries) the
corresponding meta-actions are automatically created and
added to the agenda.

Among others, the above presented BDI extensions have
been integrated bit by bit. Currently, the system comprises
28 different meta-actions of varying complexity ranging
from very simple implementations such as the DropGoal
action to rather complex ones (e.g. the ScheduleCandidate
action). The experiences gained from the development show
that the different ways of integration can be used to ade-
quately introduce new behaviour into the execution model.
In addition, as long as extensions of the BDI model are not
conceptually contradictory they can be used in conjunction.
The belief update was integrated as an external action (trig-
gered by a timing process), the explicit goal handling works
with side-effects (triggered by goal conditions), and the goal
deliberation uses direct effects (e.g. whenever a new goal is
created the deliberation starts).

Due to the self-contained nature of the meta-actions and
their very limited range of effects, a new extension in many
cases does not require existing meta-actions to be changed.
This is mainly owed to the fact that the meta-actions are
usually belief, goal, or plan actions, which only affect a sin-
gle component of the agent state and not a combination of
beliefs, goals, and plans. Additionally, most actions are re-
stricted to few instances (e.g. only change a single goal),
leading to even more simple action specifications.

6

5. Conclusion

This paper tackles the question how the BDI architec-
ture can be improved regarding the flexibility of extending
the model by introducing new, or augmenting existing con-
cepts. Extending the BDI model requires not only to ex-
tend the agent state representation, but also to adapt the in-
terpreter to operate on this extended state. In this respect,
deficiencies of the original BDI architecture are identified,
in which state transitions are only implicitly represented as
steps of an abstract interpreter.

In this paper a new architecture and system realization is
presented, which is different from most cognitive agent ar-
chitectures (such as [5, 20, 21]) in that it does not employ
an interpreter cycle with a fixed set of steps. Instead, a flex-
ible interpreter architecture is proposed, executing simple
meta-actions from a dynamic agenda. The basic BDI meta-
actions are derived from the original interpreter cycle lead-
ing to a backwards compatible execution model. This archi-
tecture supports flexibility in several ways. First it is easily
possible to add new meta-actions. Moreover, due to the ex-
plicit representation in self-contained actions, changing the
existing transitions is also simplified.

To verify the suitability of the approach, several exten-
sions to the BDI model of different complexity have been
presented. It is shown how an automatically triggered be-
lief update mechanism, a framework for explicit handling
of goals, and a goal deliberation strategy can be incorpo-
rated into the architecture. Both, the architecture as well as
the presented extensions have been implemented within the
open source Jadex BDI reasoning engine. As future work
it is planned to exploit the extensibility of the architecture
in further directions, e.g. one aspect we are especially inter-
ested in concerns teamwork in multi-agent systems.

References

[1] R. Bordini and J. Hübner. Jason User Guide, 2004.
http://jason.sourceforge.net/.

[2] M. Bratman. Intention, Plans, and Practical Reason. Har-
vard University Press, 1987.

[3] L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A Short
Overview. In Net.ObjectDays 2004: AgentExpo, 2004.

[4] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal
Representation for BDI Agent Systems. In Proc. of Program-
ming Multiagent Systems (ProMAS04), 2004.

[5] M. Dastani, F. Dignum, and J.-J. Meyer. Autonomy and
Agent Deliberation. In Proc. of the 1st International Work-
shop on Computatinal Autonomy (Autonomous 2003), 2003.

[6] D. Dennett. The Intentional Stance. Bradford, 1987.

[7] F. Dignum, D. Kinny, and E. Sonenberg. From Desires, Obli-
gations and Norms to Goals. Cognitive Science Quarterly,
2(3-4):407–430, 2002.

[8] F. Giunchiglia, J. Mylopoulos, and A. Perini. The Tro-
pos Software Development Methodology: Processes, Mod-
els and Diagrams. In Proc. of Autonomous Agents and Mul-
tiagent Systems (AAMAS’02), 2002.

[9] A. Guerra-Hernández, A. El Fallah-Seghrouchni, and H. Sol-
dano. Learning in BDI Multi-agent Systems. In J. Dix and
J. Leite, editors, Proc. of CLIMA IV. Springer, 2004.

[10] A. Hodgson, R. Rönnquist, and P. Busetta. Specification of
Coordinated Agent Behavior (The SimpleTeam Approach).
In Proc. of the Workshop on Team Behaviour and Plan
Recognition at IJCAI-99, 1999.

[11] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas. JACK
Intelligent Agents-Summary of an Agent Infrastructure. In
Proc.of the 5th ACM Int.Conf. on Autonomous Agents, 2001.

[12] F. Ingrand, R. Chatila, R. Alami, and F. Robert. PRS: A High
Level Supervision and Control Language for Autonomous
Mobile Robots. In Proc. of the IEEE Int. Conf. on Robotics
and Automation, 1996.

[13] F. Ingrand, M. Georgeff, and A. Rao. An Architecture for
Real-Time Reasoning and System Control. IEEE Expert,
7(6):34–44, 1992.

[14] D. Kinny and M. Georgeff. Commitment and effectiveness
of situated agents. Technical Report 17, AAII, 1991.

[15] D. Kinny and R. Phillip. Building Composite Applica-
tions with Goal-Directed(TM) Agent Technology. AgentLink
News, 16:6–8, December 2004.

[16] E. Letier and A. van Lamsweerde. Deriving operational soft-
ware specifications from system goals. SIGSOFT Softw. Eng.
Notes, 27(6):119–128, 2002.

[17] E. Norling. Folk Psychology for Human Modelling: Extend-
ing the BDI Paradigm. In Proc. of Autonomous Agents and
Multiagent Systems (AAMAS’04), 2004.

[18] A. Pokahr, L. Braubach, and W. Lamersdorf. A Goal Delib-
eration Strategy for BDI Agent Systems. In Proc. of the 3rd
German Multi-Agent Conference (MATES 2005), 2005.

[19] A. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical
Computable Language. In Proc. of Modelling Autonomous
Agents in a Multi-Agent World, 1996.

[20] A. Rao and M. Georgeff. BDI Agents: from theory to prac-
tice. In Proc. of the 1st Int. Conf. on MAS (ICMAS’95), 1995.

[21] Y. Shoham. Agent-oriented programming. Artificial Intelli-
gence, 60(1):51–92, 1993.

[22] A. Staller and P. Petta. Introducing Emotions into the Com-
putational Study of Social Norms: A First Evaluation. Arti-
ficial Societies and Social Simulation, 4(1), 2001.

[23] J. Thangarajah, L. Padgham, and J. Harland. Representation
and Reasoning for Goals in BDI Agents. In Proc. of the 25th
Australasian Computer Science Conf. (ACSC2002), 2002.

[24] J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and
Avoiding Interference Between Goals in Intelligent Agents.
In Proc. of the 18th Int. Joint Conf. on AI (IJCAI 2003), 2003.

[25] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah.
Declarative & Procedural Goals in Intelligent Agent Sys-
tems. In Proc. of the 8th Int. Conf. on Principles and Knowl-
edge Rep. and Reasoning (KR-02), 2002.

[26] M. Wooldridge. Reasoning about Rational Agents. Intelli-
gent Robots and Autonomous Agents. The MIT Press, Cam-
bridge, Massachusetts, 2000.

7

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

