
Flexible Coordination of Service Interaction Patterns
Christian Zirpins, Winfried Lamersdorf, Toby Baier

Distributed Systems and Information Systems Group – VSIS
University of Hamburg, Hamburg (Germany)

{Zirpins, Lamersdorf, Baier}@informatik.uni-hamburg.de

ABSTRACT
Service-oriented computing is meant to support loose relation-
ships between organisations: Collaboration procedures on the
application-level translate to interaction processes via Web Ser-
vices. Service composition deals with the specification and en-
forcement of such processes. Its main focus is on service orches-
tration where workflow management is utilised for proactive
coordination. In such an approach, coordination process and in-
teraction logic are usually captured in the same workflow – which
leads to deficiencies in recognising the possible impact of opera-
tional coordination on the interaction logic. In this paper, we
claim that the choice of coordination alternatives impacts the
quality of the composed service and has to be customised to each
specific service case. As a consequence, we outline a solution that
is based on service interaction patterns where the paradigms of
patterns and idioms are applied to interaction procedures and
orchestration processes. This allows studying a) reusable interac-
tion patterns typical for service relationships and b) for each pat-
tern a range of possible coordination idioms. Finally, we sketch a
technique that refines the service logic based on analysis of its
interaction patterns and utilisation of suitable coordination idioms
selected by rules in terms of changing service context.

Categories and Subject Descriptors
J.7 [Computer Applications]: ADMINISTRATIVE DATA
PROCESSING.

General Terms
Management, Design, Economics.

Keywords
Service-oriented Computing, Service Composition, Interaction-
and Coordination Process Patterns, Rule-based Process Refine-
ment.

1. INTRODUCTION
Web Services are software components that provide self-contained
functionality via Internet-enabled, interoperable interfaces and
publish a common description of their characteristics to be dy-

namically discovered, selected and accessed by clients. They
provide fundamental building blocks for Service-oriented Com-
puting (SOC) [1] that aims to support service relationships be-
tween organisational participants. However, a single Web Service
is almost never capable of representing a complete application-
level service (e.g. a flight booking service). On the one hand, even
a basic application service normally includes a non-trivial bilat-
eral interaction procedure between a client and a service provider
(e.g. book encash) that includes communication endpoints on
both sides and clear conversational logic. On the other hand, an
application service typically splits into functional parts (search
flight offers, book flights) of multiple providers (e.g. flight bro-
ker, airline) and includes their composition logic, resembling a
multilateral interaction procedure.

In either case, the field of Web Service composition provides
means to assemble basic Web Services into composite ones that
constitute a considerable step towards application services. In
particular, service composition deals with the coordination of
composite services by means of service orchestration processes.
Orchestration languages like BPEL4WS adopt concepts of work-
flow to specify flows of control and data between Web Service
operations. As service-oriented computing focuses on cross-
organisational relationships, service composition typically in-
cludes multiple interconnected orchestration processes controlled
by different participating organisations. Therefore, cross-
organisational workflow is an area that is closely related to ser-
vice composition. It focuses workflows that span multiple organ-
isational domains. The central problem is the decomposition of
single workflows with respect to the set of participating organisa-
tions. A straight forward solution for service realisation is the
mapping of interaction procedures to orchestration processes (i.e.
cross-organisational workflow).

However, it has to be minded that service interaction procedures
and cross-organisational workflow differ in some subtle aspects
like change frequency of participants and additional facets of their
interrelation [2]. In this paper, we propose to address one such
facet concerned with coordination: grounding interaction proce-
dures on cross-organisational workflow implies a fixed decision
on operational coordination (i.e. decomposition, refinement and
distribution of local workflows). This is not desirable for services
because it impacts their characteristics and should be rather
treated as a separated aspect that can be decided on dynamically
(at provision-time) and independently from the core service logic.
Our solution involves coordination idioms that get dynamically
selected and applied to interaction patterns in the interaction pro-
cedure by rules based on the actual service context.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
ICSOC'04, November 15–19, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-871-7/04/0011...$5.00.

The rest of this paper motivates and outlines our service coordina-
tion concept. Initially, we review service-oriented computing

concepts and technology for supporting application processes in
section 2. Then we detail the coordination problem of service
composition in section 3. Subsequently, we propose patterns and
rules as an approach to achieve flexibility of service coordination
in section 4. In section 5 we discuss related work before conclud-
ing in section 6.

2. SYSTEM SUPPORT FOR APPLICA-
TION-BASED SERVICE PROCESSES
As a basis for our main proposal, the following section introduces
the underlying concepts of process-oriented application services
and their relation to common techniques of service-oriented com-
puting. First, it introduces Web Services as building blocks for
distributed information systems. Then, it details the specific class
of application services which is strongly related to interaction
processes between organisational participants. This is followed by
a survey of major process-oriented Web Service extensions. Fi-
nally, the relation to service composition is drawn.

2.1 Web Services as Component Technique
for Distributed Information Systems
The mainly industrial driven standardisation of the Web Service
system-technology architecture [3] is the latest evolutionary step
of support for distributed software applications on the Internet. In
particular, this is true for cross-organisational cooperative infor-
mation systems [4]. Web Services are software components that
offer self-contained functionality to potential users of interoper-
able applications in a distributed environment, using open, stan-
dardised interfaces and protocols. Service providers are realising
the functionality of their services and publish service characteris-
tics in a standardised form via service brokers. This allows differ-
ent service clients to discover (maybe even at runtime), select
(according to their criteria), bind, and access them [1]. Essen-
tially, Web Services can be seen as components of distributed
applications that are only abstractly defined in the beginning.
Subsequently, a client can dynamically change providers to real-
ise the concrete Web Service functionality at runtime. Therefore,
the service of a Web Service provider consists of supplying com-
patible software components for external clients. Existing meta-
models for Web Services (e.g. WSDL) provide the means to de-
scribe services of this kind.

An interesting variant is the case of a distributed software applica-
tion that represents a service on application-level (referred to as
application service), building on functionality of separate Web
Services as components. An example for this is a composed, dis-
tributed flight reservation service with all of its sub services
which can be bound to different locations or organisations for
different clients or situations. While basic Web Services in their
current state do support technical access to the functionalities of
such a composed application service, their service model does not
suffice completely to adequately describe the resulting service on
the application-level: beyond its lack of means to express several
(functional and non-functional) application aspects, such as trans-
action support, authentication security, quality of service, service
accounting and service billing, a strong deficit is the lack of a
process-oriented perspective of application services. Such a view-
point allows covering the interaction procedure (which is in most
cases quite complex) between the different, distributed and for the
most part heterogeneous service participants. Better system-level

support for such interactive and process-oriented aspects of open
Web Service-based applications is a main research goal in ser-
vice-oriented computing.

2.2 Application Services and Service
Interaction Processes
In particular, an interactive application service often includes a
bilateral interaction procedure between client and provider which
is not covered by the Web Service model. Such so called conver-
sations between two service participants require operational inter-
faces (i.e. Web Services) as communication endpoints on both
sides as well as explicitly exposed and mutually agreed conversa-
tional logic (e.g. the flight booking example mentioned above
could start with a request message from a passenger to a travel
agency, followed by a flight confirmation message and finally an
invoice message back from the travel agency to the passenger).

Concerning application services with multiple service providers
(such as flight booking via a flight information agency and an
airline), it is often the case that multilateral interaction procedures
have to be focussed in addition to bilateral interaction procedures.
In such a case, the correct interrelation of all the functional parts
(i.e. retrieval of flight information from the agency followed by
flight reservation at the airline) requires a specification of compo-
sition logic for service execution – i.e. an instruction how an ap-
plication service is constructed from other application services
including all procedures and protocols on application-level.

Within a process-oriented perspective of cooperating Web Ser-
vices the representation of a (composite) application service not
only requires to specify separated communication endpoints of
service participants by a set of their Web Service interfaces but
also to capture the associated service procedure that represents
their underlying interaction logic.

2.3 Process-oriented Web Service Extensions
In the course of ongoing development, the Web Service architec-
ture was – both technically and conceptually – expanded to more
adequately support the manifold requirements of distributed ap-
plications. Some of these extensions are already geared towards
process characteristics of Web Services and Web Service-based
applications – namely Web Service Conversation, -Choreography
and Orchestration (see figure 1).

First to mention, Web Service conversation revolves around the
extension of operational Web Service interfaces by protocols of
their correct call sequences (see figure 1, left). Those approaches,
which are often based on finite state automata (e.g. WSCL by
Kuno et al [5]), mainly target bilateral conversation with single
Web Services.

For the coverage of complex interaction procedures that go be-
yond single Web Services, superordinate protocol specifications
are currently being developed which are collectively known as
Web Service choreography (see figure 1, right). Languages like
the W3C working draft Web Services Choreography Description
Language (WS-CDL) [6] define the publicly observable behaviour
of collaborations, each consisting of invocations of different Web
Services, from a neutral point of view. Choreographies are well
suited for the characterisation of general service processes and
allow verifying the consistency of potential participants based on
their conversation descriptions.

Furthermore, concepts and technologies to glue Web Service
components together and make them available as a single com-
posite service are subsumed under the term Web Service composi-
tion. The unification of design and specification of composite
Web Services constitutes a basis for system-level support or even
automation of general management operations – like for example
the discovery and binding of suitable providers and clients as well
as their enactment during service execution.

Figure 1. Process-oriented extensions of basic Web Services

The most commonly used approach to service composition is the
so called Web Service orchestration (e.g. [7]): Its first step is to
specify the causal dependencies of functional Web Service calls
as well as the dependencies of the herein used parameters as a
process (see figure 1, middle). Subsequently, this process specifi-
cation represents the coordination logic of the composite Web
Service and furthermore serves as the instruction for automated
coordination of the service application flow. The concepts of the
respective process description languages or orchestration lan-
guages (e.g. BPEL4WS [8]) are mainly based on those for the
representation of workflows (i.e. automated, collaborative process
flows [9] that can also be used to model control- and data flow of
a set of Web Services), enabling execution support by Workflow
Management Systems (WfMS).

2.4 Application Service Composition
A comprehensive representation of application services in open,
distributed environments – that is a major research goal of ser-
vice-oriented computing – includes revealing and exposing all
relevant relationships between enterprises or organisations that
need to be considered in order to enable open application-level
interaction. Part of these efforts is the composition of application
service components to value added services. However, in contrast
to the composition of Web Services, the perspective is here much
broader and more application-oriented [2].

A central aspect in the composition of value added application
services is the process-oriented viewpoint onto the interaction
logic of the service participants. A direct approach to support this
view on a system-level is its implementation as Web Service or-
chestration. The interaction logic of an application service is then
expressed by the control and data flow of a workflow. The par-
ticipants of the workflow are represented using a role model and
their mutual communication of messages are mapped to activities
which, in turn, are realised as Web Service operations (see figure
2).

Since service-oriented computing mainly aims at relationships
that span multiple different organisations, such a service composi-
tion typically consists of multiple networked orchestration proc-
esses which can be enforced by different participants. For this
reason, cross-organisational workflow techniques (see e.g. [10])
that support workflows over multiple organisational (and techni-
cal) domains naturally have to be considered. A central problem
of such workflows is the distribution of a central workflow to
different organisations that take part in the execution. Facets of
this problem include, among other things, questions of process
meta-models and modelling, analysis, classification, consistency
and verification of processes, as well as their execution and run-
time architectures.

Figure 2. Mapping of service procedure to Web Service
techniques

However, compared to cross-organisational workflows there are
additional requirements in terms of system dynamics when realis-
ing application services. This results from dynamically changing
participants and, thereby, the resulting flexibility of the (applica-
tion) processes. Furthermore, some additional (application-
specific) facets of the relationships are hard to cover [2] (one of
those will be presented in more detail later and results in the es-
sential problem behind this work).

In contrast to the dynamics of service-specific interaction proc-
esses, cross-organisational workflows (e.g. for the realisation of
collaborative relations in virtual organisations) are often tailored
to previously known participants and have to be changed only
rarely (apart from system evolution). However, participants of
composite application services change often– even during runtime
– since providers offer their service to several clients and clients
can switch their providers, respectively. Therefore, appropriate
support for this natural system property is vital. Accordingly,
representations for the interaction logic of application services
need to initially capture the characteristic service dependencies
only in a universal ("abstract") form (i.e. still without precise
specification of the organisations who will participate). When
instantiating concrete service relationships (also called service
cases) where the participating organisations are ultimately ap-
pointed, this abstract interaction logic has to be refined with re-
spect to the requirements of the hence completely known execu-
tion context. In doing so, also facets of the service relationship
must be specified, that can not be appropriately expressed within
the framework of general workflow models (e.g. requirements for
quality or organisational structure of the procedure).

Workflow-based composition of application services is at the
heart of various current research approaches: For example the
system "eFlow" of Casati et al [11] particularly enables the flexi-

ble composition of application services as workflows that can be
changed dynamically. The project DySCo [12] also introduces a
process-based service notion and develops means to derive the
partial process of each participant from it. Another workflow-
based system of similar kind is SELF-SERV from Dumas et al
[13]. Some approaches also consider extended application re-
quirements: Yang et al. [14] define the "Service Composition
Lifecycle" that is a methodology for flexible and dynamic con-
struction of application services. Based on that, Orriëns et al [15]
employs business rules for dynamic process construction.

So far, the impact of operational coordination of service instances
on the characteristics of the underlying composite application
service is an aspect of process-based service composition that
draws little attention. However, we will see that this specific facet
of service relationships introduces further differences to cross-
organisational workflow approaches that open up a considerable
potential for optimisation.

3. THE COORDINATION PROBLEM OF
APPLICATION SERVICE PROCESSES
As discussed in the last section, the current mainstream approach
to the composition of application services is based on a process-
oriented design of the interaction logic together with a workflow-
based realisation as Web Service orchestration process. While this
approach has considerable merits (e.g. in terms of the intuitive
representation and possible visualisation of processes) it has also
drawbacks, partly caused by inherent characteristics of the work-
flow concept itself and partly by different requirements of cross-
organisational workflow on the one hand side and service-
oriented computing on the other [2].

A specific class of problems arises from the coordination aspect
of application service processes: Here, we distinguish the logical
dependencies that are modelled by the interaction logic from the
operational coordination that refers to the procedure or method
that is utilised to enforce the logical dependencies. While cross-
organisational workflow processes represent the logical depend-
encies of interactions (i.e. causal and data relationships of mes-
sage exchanges) they simultaneously act as instructions for their
coordination on the execution-level by distributed WfMS1. Note
that hereby the coordination procedure emerges only implicitly as
a “side-effect” of dependencies from the interaction logic and not
because for application-specific reasons.

On the other hand, there are in most cases multiple concrete alter-
natives for the enforcement of the abstract application-oriented
interaction logic. A reason for this is the multiplicity of possibili-
ties to split the dependencies of the interaction logic into different
partitions as well as the variety of alternatives to delegate parts of
a partition to executive organisations for operational coordination.
This ambiguity is important because the choice of the operational
coordination structure affects certain (non-functional) characteris-
tics of the cross-organisational workflow. Colombo, Francalanci
and Pernici [16] describe this effect in terms of the organisational

1 For the sake of precision, it has to be noted that process engines

usually transform the workflow process representations that are
used for modelling into an equivalent representation that is op-
timized for execution purpose (e.g. ECA rules for active
DBMS).

structure of inter-enterprise relationships. Furthermore, we reckon
an impact on additional non-functional characteristics that affect
the quality of an application service (QoS).

3.1 An illustrative example
In order to illustrate the issue, we discuss the example of a simpli-
fied flight booking service. The interaction logic of this service is
shown in figure 3.

Figure 3. Flight booking service: Interaction procedure

The pseudo-notation – that is geared to usual workflow models –
contains communication steps (circles) and transitions (arrows).
Communication steps represent the sending of messages to an
endpoint (e.g. book) either originating from (rcv) or going to (snd)
a role that represents a participant (tra = travel agency, pas =
passenger, air = airline, fbr = flight broker). The example infor-
mally expresses that a passenger accesses a booking service and a
flight broker is consequently queried for an airline to forward the
request to. If an offer is found, a booking request is issued to the
airline, and, after its confirmation, an invoice is sent to the pas-
senger. Otherwise, a fault is reported.

Figure 4. Coordination alternative A: central orchestration

Up to now, the interaction logic tells nothing about the partici-
pant(s) that enforce the dependencies between the message ex-
changes at runtime. Figure 4, figure 5 and figure 6 show three
alternative refinements (A-C) in terms of operational coordina-
tion. For each of them, the interaction logic is partitioned into
interrelated interaction processes that are assigned to individual
roles. Subsequently, interaction processes can be translated to a
Web Service orchestration language (whereby message communi-
cations translate to Web Service operations) that allows their dis-
tributed execution. While alternative partitionings only impose
minor process changes which lead from the abstract interaction
logic to the concrete coordination logic, also deeper modifications
are possible – as long as the original dependencies of the interac-
tion logic are preserved. Thus, the examples demonstrate that the
coordination logic of a service realisation can vary substantially
while the respective interaction logic remains exactly the same.

However, different coordination alternatives affect various non-
functional characteristics: On the one hand, differences can
emerge on the system-level: For example, alternative A features a
centralisation of the coordination that results in lower overhead
and thus reduced costs (because there is less hand-over of con-
trol), but might suffer from common drawbacks like, e.g., a bot-
tleneck. The alternatives B and C feature decentralised coordina-
tion that leads to more complexity but allows for local optimisa-
tions and increased parallelism.

Figure 5. Coordination alternative B: Decentralised orches-
tration with an implicit change of control

Figure 6. Coordination alternative C: Decentralised orches-
tration with explicitly preserved control

On the other hand, differences appear on application-level: While
alternative A empowers TravelSmart to coordinate (and control)
the whole interaction procedure, alternative B delegates a certain
level of coordination and control to other participants. This results
in an explicit shift of rights and responsibilities as well as an im-
plicit shift of autonomy. Such differences may be crucial to spe-
cific business constraints of an organisation. While this is in some
cases acceptable (e.g. alternative B: TravelSmart delegates short-
term consumers to public accessible sub-services because cus-
tomer retention is considered unimportant.) it is not acceptable in
others (e.g. alternative A: TravelSmart acts as an integrator of
non-public sub-services for a retailer to which TravelSmart wants
to keep an exclusive long-term relationship.). However, it is pos-
sible to compensate such effects partly by refining the operational
coordination (e.g. alternative C: In spite of delegated coordina-
tion, TravelSmart regains control as well as the direct and exclu-
sive relationship to its customer.).

3.2 Inflexible service coordination
The concrete choice of coordination alternatives depends on the
specific requirements of the organisations that eventually partici-

pate in the execution of the application process. Because applica-
tion services are faced with a continuous change of participants
the concretisation of the specific coordination logic should be
kept open until the participants (together with their specific and
dynamically changing requirements) of a specific application
service case are ultimately known. Only then, a refinement should
be made that is optimal for this specific case and complies with
the abstract (functional and non-functional) requirements of the
application service as specified in the interaction logic.

The principal problem of common workflow approaches to de-
scribe such distributed, interactive applications in open heteroge-
neous environments is due to the fact that flexibility of opera-
tional cooperation is usually not supported. In particular, general
workflow models lack the appropriate abstractions to adequately
express the necessary coordination aspects. Moreover, general
workflow techniques lack appropriate methods (beyond general
approaches to flexibility) to vary the operational coordination
dynamically at runtime depending on case-specific criteria.

4. A PATTERN-BASED APPROACH FOR
FLEXIBLE SERVICE COORDINATION
As presented in the last section, the currently dominant approach
to realise distributed applications in heterogeneous environments
by workflow-based composition of Web Services still shows se-
vere shortcomings in case of service-oriented cooperative infor-
mation systems (application services).
In terms of coordinating application service processes, workflows
pinpoint the concrete coordination process without taking into
account qualitative aspects (e.g. the global organisation structure)
and do not provide appropriate means for a flexible control of
coordination at provision-time. Overall, the impacts of coordina-
tion in terms of service-quality can neither be expressed nor dy-
namically adapted to the requirements of varying participants or
other dynamically changing system states.
Therefore, the goal is to provide system-level support for opti-
mised enforcement of application services by dynamic control
and optimisation of non-functional service properties based on
flexible coordination of service-specific cross-organisational in-
teraction procedures with utilization of alternative coordinative
variations at provision-time.
In this section, we first summarize challenges in the service com-
position lifecycle that originate from the coordination problem.
Thereafter, we sketch our approach to solving some of them: a
framework for flexible service coordination that is based on pat-
terns of service interaction. Finally, we accentuate the conceptual
part of this framework which strives for a base of empirical
knowledge of specific real-life patterns.

4.1 Coordination Related Challenges in the
Service Composition Lifecycle
Before outlining the main ideas of our approach, we summarize
the challenges that emerge from last section’s observations in the
context of the service composition lifecycle proposed by Yang and
Papazoglou [14]. Such a lifecycle is structured into five phases: 1)
planning (synthesis of service logic), 2) definition (abstraction of
service composition), 3) scheduling (analysis of possible compo-
sition refinements in the context of a new service case), 4) con-

struction (assembly of concrete composition for the case), and 5)
execution (enforcement of concrete composition).
In this work, we suppose service interaction logic (i.e. conversa-
tion- and composition logic) as external input (e.g. from business
process (re-)engineering) and do not directly interfere with its
synthesis. Thus, our methodology can be classified as semi-fixed
composition [14] and considers phases 2-5 where we face the
following problems:

• Phase 2) Definition phase: specification of coordination-
independent interaction procedure. Here, an interaction
process meta-model is needed that can represent given con-
versational- and composition logic in terms of dependencies
between abstract service components (messages) and abstract
participants (roles) and does not imply any constraints for
operational coordination. Additionally, the model needs to
provide means for representing possible coordination choices
and policies for their selection.

• Phase 3) Scheduling phase: analysis and evaluation of co-
ordination choices. Here, exact information is needed about
a) the range of possible coordination choices for a given in-
teraction procedure, b) the range of relevant service charac-
teristics and the effects of individual choices on them, and c)
the service case’s context, i.e. the group of possible partici-
pants together with their characteristics and requirements.
The analysis has to consider all this information and prepare
it for evaluation. Finally, evaluation requires a pre-defined
metric of qualitative measurements and a formal framework
for automated reasoning in terms of coordination policies.

• Phase 4) Construction phase: refinement of interaction pro-
cedures into service orchestration processes. Here, model
transformation capabilities are needed from the interaction
process meta-model to a cross-organisational workflow
meta-model of choice. Additionally, structural transforma-
tions of cross-organisational workflows are needed to refine
the dependencies of the interaction procedure to the choice
of operational coordination. This does not only require the
capability to merely do any such transformation but rather
exact knowledge of how to realise each specific choice of
cooperation.

There are no specific problems in terms of this discussion w.r.t.
the execution phase because orchestration processes resemble
standard (cross-organisational) workflows that are handled by a
respective WfMS as usual.

4.2 Generic Mechanisms for Flexible Service
Coordination Based on Patterns
A concept to meet these challenges has to deal predominantly
with the management of relationships between the abstract appli-
cation-level (= interaction logic) and the concrete implementa-
tion-level (= coordination logic) of application services. In par-
ticular, such a concept has to a) free the interaction logic from
undesired effects on the coordination logic and b) leverage rele-
vant implications that result from a concrete coordination variant
onto the abstract level of interaction logic. While a) is a question
of appropriate techniques (i.e. mainly analysis, optimisation, and
transformation of respective process models), b) requires a-priori
knowledge of concrete use cases: What coordination choices are
there and to which forms of interaction procedures do they apply?

What are the implications of specific coordination choices in
terms of which service characteristics? Those questions arise be-
cause, in terms of application-specific effects of coordination
alternatives, also non-technical aspects have to be considered that
need to be empirically analysed beforehand.
Our approach considers both aspects in a joint technical and con-
ceptual framework: On the one hand side, the optimisation of
coordination-sensitive service properties is generally enabled by
generic mechanisms for flexible workflow-based coordination of
process-oriented application logic. On the other, a concrete cata-
logue of reusable interaction patterns is used as a basis for the
utilization of the generic mechanisms for the support of specific
service interactions.

Figure 7. Conceptual overview of the approach
The basic principle of the technical solution (see figure 7) consists
of a combination of design- and implementation patterns (the
latter are referred to as idioms) with rule-based control by so
called policies. Thereby, the interaction logic of an application
service is not only expressed by a process model (like in usual
workflow-based approaches) but is kept abstract as far as possible
(i.e. in particular with respect to non-functional parameters that
are unknown until provision-time). The abstract parts of the re-
spective interaction procedures are expressed by interaction pat-
terns that initially only specify the generic process characteristics.
In contrast, the refinement of runtime aspects that are needed for
the concrete coordination of services is firstly specified (i.e. dy-
namically) at provision-time (e.g. a pattern could initially specify
an abstract payment procedure where different coordination alter-
natives impact the security properties of the application service
that are decided on at provision-time).
Possible refinement alternatives are anticipated in coordination
idioms that represent the coordination alternatives. For each ab-
stract interaction pattern, there exist a set of such concrete coordi-
nation idioms (e.g. there could be a centralised and decentralised
alternative for the coordination of the payment procedure men-
tioned above). Each idiom specifies the realisation of a concrete
coordination process by transformation rules from the abstract
interaction procedure of the pattern.
The criteria for the choice of the respectively most appropriate
coordination idiom are specified as part of the interaction logic by
coordination policies. A coordination policy describes the effect
of a coordination variant in terms of specific non-functional ser-
vice properties and thereby controls the choice of alternatives
with respect to current participants (e.g. a policy for the payment
procedure could state that the requirement of a participant for the
non-functional service property of secure payment has to lead to
the choice of the centralised coordination idiom).
For the preferably fast, comfortable and reliable development of
application services, basic pre-analysed patterns are offered. They

provide means to model the interaction logic at design-time and
serve as basis for analysis and optimisation of coordination logic
at runtime. Therefore, preferably generic and reusable patterns are
collected in a pattern catalogue.

4.3 Towards a Conceptual Framework of
Concrete Service Patterns
Despite the fact that, by now, there is a large interest in the com-
position of application services, the field of research is yet in an
initial stage and consolidated knowledge is still scarce. Thus, up
to now only few generic forms of service-specific interaction
logic are known and those few are merely characterised in an
informal way. Beyond the brokerage pattern, which is probably
best-known and some other forms like delegation or migration
that all emanate from the context of system technology, the con-
text of application-oriented and -specific interactions is a potential
source of additional relevant forms.

Our framework is intended to provide the necessary means to
gather those generic interaction patterns in a systematic way.
Thus, the framework comprises a catalogue of concrete generic
interaction patterns, coordination policies and coordination idioms
to subsequently build system support techniques upon. Here, re-
curring (and thus reusable) patterns are collected and classified.
With a basic set of such patterns, application-level interactions
can be designed and analysed to finally optimise and support
respective process coordination with system software techniques.

The conceptual challenge is to identify a range of relevant service
patterns to fill the catalogue. The first step is to assemble a collec-
tion of typical interaction patterns. For that purpose, patterns are
collected that are generic and as little as possible domain-specific.
In addition to a basic set of such patterns, a taxonomy of service-
specific interaction patterns is needed for the classification and
structuring of the collection. The idea is to foster the identifica-
tion of concrete patterns with appropriate use cases. After interac-
tion patterns are informally identified, they are analysed in terms
of the underlying generic procedure and interaction logic. Also,
relevant non-functional properties (e.g. performance, robustness,
security) together with an appropriate metric are determined.

In contrast to interaction patterns, the collection of coordination
idioms can be done in a systematic way. The identification is
based on one interaction pattern respectively that already deter-
mines a scope in terms of the structure of the underlying proc-
esses and thus allows deriving of possible coordination alterna-
tives. Each such coordination variant has to be analysed in terms
of its detailed process, its possible prerequisites, and its effects on
interaction-specific non-functional service parameters. The gath-
ered information is finally pinpointed as transformation rules of
the coordination idiom and extension of the interaction pattern
with additional coordination policies.

The rationale for these investigations is to gain consolidated
knowledge about the coordination of service interactions. Con-
crete patterns and idioms become part of the system’s knowledge
base and can be applied in the lifecycle. The existence of such
knowledge is crucial for the application of our approach and
forms the conceptual part of our framework. Its investigation
constitutes an important and distinctive part of our research.

5. RELATED WORK
In principle, our approach to service coordination is part of the
field of workflow-based service composition (see sec.2 for gen-
eral work in this area) and copes with coordination problems that
are partly rooted in the workflow itself and partly originate from
the different requirements of service composition. In particular,
we adopt techniques of patterns and rule-based transformation in
the context of workflow.
The general use of rules in workflow management is quite com-
mon: Apart from the integration of rules as elements inside work-
flows, rules have been used on meta-level for workflow adapta-
tion [17, 18]. In this case, rules govern modifications that are
applied to a workflow either statically at design-time or dynami-
cally at runtime to add flexibility. More recently, business rules
have been proposed to construct BPEL4WS service composition
processes [15]. This approach has particular similarities to ours in
terms of its use of rules to conduct different transformations of
service orchestration processes during the service composition
lifecycle. Though, it does not consider pattern mechanisms or
investigate concrete process structures.
Patterns provide means to conserve and reuse knowledge about
the solution of a generic problem. They range from informal
guidelines used in system design (design patterns) to customiza-
ble code fragments (implementation patterns or idioms). In par-
ticular, patterns are widely known for their use in object-oriented
design and architecture [19]. Pattern concepts have also been
applied to workflow management. Foundational studies on basic
control-flow structures, named workflow patterns [20], can be
used to examine and compare general workflow languages. In
[21], a formal model is proposed for rule idioms that can be in-
stantiated as rule elements in workflow schemas in the Chimera-
Exc language. In [16], high-level design patterns for organisa-
tional coordination and control structures are proposed and related
to corresponding cross-organisational workflows.
Recently, pattern-based approaches have been proposed for ser-
vice composition. The authors of [22, 23] propose architectural
design patterns that give indications on starting points for our
investigation of interaction- and coordination patterns. Another
proposal is to use design patterns of service composition logic
[24]. To the best of our knowledge, work on process patterns for
service interaction or -coordination has not been published yet.

6. CONCLUSION
In the emerging research field of service-oriented computing and,
especially, in the area of service composition, many approaches
are closely related to workflow concepts. In particular, concepts
of cross-organisational workflow are often used to model and
execute composite services. However, first doubts appear on the
appropriateness of workflow concepts for service composition as
the latter is believed to imply more complexity, more dynamics
and more facets in the relation of participants. Additional doubts
emerge from findings from research in the area of cross-
organisational workflow that indicate shortcomings of current
concepts as regards the support of coordination aspects. The prob-
lem is that most efforts concentrate on developing generic tech-
niques to solve problems of an application area that is generally
not well understood yet. Only few approaches aim at investigating
concrete characteristics (e.g. specific classes of problems, their
requirements and solution strategies etc.) of composite services.

In this paper we propose to investigate the specific facet of coor-
dination aspects in service composition. We stress the relevance
of coordination alternatives for the enforcement of service com-
position dependencies, as the choice of such an alternative re-
bound on service characteristics. To address this point, we pro-
pose generic mechanisms that allow representing relationships
(coordination policies) between the abstract service composition
logic (interaction patterns) and its concrete coordination choices
(coordination idioms). The ability to model patterns of composi-
tion logic and their idioms of coordination enables us to formulate
and structure knowledge of a range of concrete problems and
solutions of service composition that we intent to examine. Ulti-
mately, the generic mechanisms together with the concrete
knowledge translate into a framework to support the lifecycle of
service composition.

7. REFERENCES
[1] M. P. Papazoglou and D. Georgakopoulos, "Service-oriented

computing: Introduction", Communications of the ACM, vol.
46, pp. 24-28, 2003.

[2] J. Yang, W.-J. v. d. Heuvel, and M. P. Papazoglou, "Tackling
the Challenges of Service Composition in e-Marketplaces",
in 12th Int. Workshop RIDE-2EC, 2002.

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Ser-
vices - Concepts, Architectures and Applications: Springer,
2004.

[4] G. D. Michelis et al. "Cooperative Information Systems: A
Manifesto", in Cooperative Information System: Trends and
Directions, M. P. Papazoglou and G. Schlageter, Eds.: Aca-
demic Press, 1997.

[5] H. A. Kuno, M. Lemon, A. H. Karp, and D. Beringer:, "Con-
versations + Interfaces = Business Logic", in 2nd Int. Work-
shop, TES 2001, F. Casati, D. Georgakopoulos, and M.-C.
Shan, Eds.: Springer, 2001, pp. 30-43.

[6] N. Kavantzas, D. Burdett, and G. Ritzinger, "Web Services
Choreography Description Language Version 1.0", W3C
Working Draft 27 April 2004.

[7] C. Peltz, "Web Service orchestration and choreography: a look
at WSCI and BPEL4WS - Feature", Web Services Journal,
vol. 3, 2003.

[8] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S.
Thatte, and S. Weerawarana, "Business Process Execution
Language for Web Services, Version 1.0", BEA, IBM, Mi-
crosoft 31 July 2002.

[9] D. Georgakopoulos, M. Hornick, and A. Sheth, "An overview
of workflow management: from process modeling to work-
flow automation infrastructure", Distributed and Parallel
Databases, vol. 3, pp. 119-53, 1995.

[10] P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig, "Cross-
Flow: cross-organizational workflow management in dy-
namic virtual enterprises", Computer Systems Science and
Engineering, vol. 15, pp. 277-90, 2000.

[11] F. Casati and Ming Chien Shan, "Dynamic and adaptive
composition of e-services", Information Systems, vol. 26, pp.
143-63, 2001.

[12] G. Piccinelli, A. Finkelstein, and S. L. Williams, "Service-
oriented work-flows: the DySCo framework", in. 29th Eu-
romicro Conf., 2003.

[13] M. Dumas, B. Benatallah, and Z. Maamar, "Definition and
Execution of Composite Web Services: The SELF-SERV
Project", Data Engineering Bulletin, vol. 25, 2002.

[14] J. Yang and M. P. Papazoglou, "Service Components for
Managing Service Composition Lifecycle", Information Sys-
tems, vol. 29, pp. 97-125, 2004.

[15] B. Orriëns, J. Yang, and M. P. Papazoglou, "A Framework
for Business Rule Driven Service Composition", in 4th Int.
Workshop, TES 2003, B. Benatallah and M.-C. Shan, Eds.:
Springer, 2003, pp. 14-27.

[16] E. Colombo, C. Francalanci, and B. Pernici, "Modeling Co-
ordination and Control in Cross-Organizational Workflows",
in. CoopIS/DOA/ODBASE 2002, R. Meersmann and Z. Tari,
Eds.: Springer, 2002, pp. 91 ff.

[17] C. Zirpins and G. Piccinelli, "Evolution of Service Processes
by Rule Based Transformation", in IFIP Int. Conf. I3E 2004,
W. Lamersdorf, V. Tschammer, and S. Amarger, Eds.: Klu-
wer, 2004, pp. 287-305.

[18] G. Joeris and O. Herzog, "Managing Evolving Workflow
Specications with Schema Versioning and Migration Rules",
University of Bremen TZI Technical Report 15, 1999.

[19] F. Buschmann, R. Meunier, H. Rohnert, and P. Sommerlad,
Pattern-Oriented Software Architecture - A System of Pat-
terns: Wiley and Sons Ltd., 1996.

[20] W. M. P. v. d. Aalst, A. H. M. t. Hofstede, B. Kiepuszewski,
and A. P. Barros, "Workflow Patterns", Distributed and Par-
allel Databases, vol. 14, pp. 5-51, 2003.

[21] F. Casati, S. Castano, M. G. Fugini, I. Mirbel, and B. Pernici,
"Using Patterns to Design Rules in Workflows", IEEE Trans.
Software Eng., vol. 26, pp. 760-785, 2000.

[22] O. F. Rana and D. W. Walker, "Service Design Patterns for
Computational Grids", in Patterns and Skeletons for Parallel
and Distributed Computing, F. A. Rabhi and S. Gorlatch,
Eds.: Springer, 2003, pp. 237-264.

[23] B. Benatallah, M. Dumas, M. C. Fauvet, and F. Rabhi, "To-
wards Patterns of Web Services Composition", in Patterns
and Skeletons for Parallel and Distributed Computing, F. A.
Rabhi and S. Gorlatch, Eds.: Springer, 2003, pp. 265-296.

[24] D. Edmond and M. T. Tut, "The Use of Patterns in Service
Composition", in Int. Workshop, WES 2002, C. Bussler et al.
Eds.: Springer, 2002, pp. 28-40.

	INTRODUCTION
	SYSTEM SUPPORT FOR APPLICATION-BASED SERVICE PROCESSES
	Web Services as Component Technique for Distributed Informat
	Application Services and Service �Interaction Processes
	Process-oriented Web Service Extensions
	Application Service Composition

	THE COORDINATION PROBLEM OF APPLICATION SERVICE PROCESSES
	An illustrative example
	Inflexible service coordination

	A PATTERN-BASED APPROACH FOR FLEXIBLE SERVICE COORDINATION
	Coordination Related Challenges in the Service Composition L
	Generic Mechanisms for Flexible Service Coordination Based o
	Towards a Conceptual Framework of Concrete Service Patterns

	RELATED WORK
	CONCLUSION
	REFERENCES

