
Evaluation of Agent–Oriented Software
Methodologies – Examination of the Gap

Between Modeling and Platform

Jan Sudeikat1, Lars Braubach2, Alexander Pokahr2, and Winfried Lamersdorf2

1 University of Applied Sciences Hamburg,
Berliner Tor 3, 20099 Hamburg, Germany,

Jan.Sudeikat@hamburg.de
2 Distributed Systems and Information Systems,

Computer Science Department, University of Hamburg,
Vogt–Kölln–Str. 30, 22527 Hamburg, Germany

Tel. +49-40-42883-2091
{braubach | pokahr | lamersd}@informatik.uni-hamburg.de

Abstract. More and more effort is made to provide methodologies for
the development of agent–based systems. Awareness has grown that these
are necessary to develop high quality agent systems. In recent years a
number of proposals has been given. Based on our experiences we argue
that a complete evaluation of methodologies cannot be done without
considering target platforms, because the differences between available
implementations are too fundamental to be ignored. In order to conduct
a suitable comparison we present a flexible evaluation framework that
takes platform specific criteria into account. Part of this framework is a
procedure to derive relevant criteria from the evaluated platforms and
methodologies. In combination with a set of platform dependent and
independent criteria our framework allows evaluation of the appropri-
ateness of methodologies with respect to platforms. As a consequence,
also the suitability of methodologies for an individual platform, or vice
versa of several platforms for an individual methodology can be exam-
ined. To show the usefulness of our proposal, we evaluate the suitability
of different methodologies for an example platform.

1 Introduction

Besides the necessity for reliable agent platforms the need for the methodical
development of applications has been noticed (as described in [18], [19]) and is
addressed by a number of proposed methodologies for building agent–based soft-
ware applications (surveyed in [36], [16]). According to [31] a methodology aids
development through (1) guidance by a life cycle process, (2) a set of predefined
techniques (guidelines, heuristics, etc.) and (3) allows modeling by providing a
suitable notation. What these three elements comprise is different in the specific
proposals. This makes it difficult for organizations to decide which one to use.
The selection of the right methodology is crucial for the success of a large

software project, because developers will need guidance how to use this new
paradigm. According to [21], suitable methodologies are a key factor to introduce
agent–orientation as an engineering approach to the industry. Since a number
of methodologies has been proposed there is a need for structured means to se-
lect appropriate ones with respect to a concrete setting. Organizations will need
guidance to select one to adopt for their own development.
To address these needs different frameworks for comparison have been proposed.
These use feature–based evaluations of numerous criteria to identify superior
ones. However none of the proposed approaches takes the target agent platform
into account. Platforms imply different concepts of agency in different pecu-
liarities. Since the support for agent oriented concepts differs between concrete
implementations, our proposal stresses that there are both platform dependent
and independent criteria to evaluate. In the following pages we identify a set of
aspects to take into account and show how to derive platform dependent criteria
from target platforms.
To guide evaluation regarding these criteria we present a flexible framework to
examine the match between platform and methodology. It allows to examine the
appropriateness of methodologies for a preselected platform or vice versa the
appropriateness of different platforms for an individual methodology. This flexi-
bility is advantageous, because software producing organizations are seldom free
to choose tools and methodologies as they like. Often there will be restrictions,
e.g. industry projects may have to focus on a single platform because a client
demands its usage or universities may favor a special methodology and need to
find a suitable software environment.
The usage of our approach is clarified by an example evaluation of the appropri-
ateness of prominent methodologies for a concrete platform, implementing the
BDI architecture [28]. Following our framework we derive a number of platform
dependent criteria from this implementation and together with platform inde-
pendent criteria we examine the match between pairs of platform and method-
ology.

The next section gives a brief overview of proposed methodologies and exam-
ines the comparisons of agent–oriented methodologies that have already been
conducted. Section three presents our framework. First we describe the modus
operandi of our approach and present thereafter the set of criteria to examine.
The fourth section shows an example evaluation of a set of methodologies for a
concrete platform. Finally we conclude and give prospects for further work.

2 Background

In [14] a number of different methodologies have been arranged in a genealogy.
Figure 1 gives an overview of current proposals in a similar way. It illustrates the
main influences on the individual methodologies. We found Object–Orientation
(OO), Knowledge Engineering (KE) and Requirements Engineering (RE) as an-
cestors, which have been extended by agent programming abstractions (denoted

Fig. 1. Genealogy of proposed methodologies

by ovals). P denotes a coarse category of sources. Associated methodologies
were inspired by experiences with specific agent platforms or architectures. In-
termediate forms (dotted rectangles) have been extended to truly agent–oriented
methodologies (rectangles). A complete list of references to these methodologies
is omitted here for sake of brevity, it can be found in [34].

A small amount of work has been conducted to compare agent–oriented method-
ologies. These approaches found two sources of features to examine. First, they
adopt general software–engineering criteria, which have been found relevant for
evaluations of methodologies according to various paradigms. Secondly, they
identified specific criteria that are needed to support agent–oriented concepts
in development. All of them gather a set of criteria, which is supposed to be
independent from the field of application or platform. They point out what is
needed for a comprehensive methodology together with individual drawbacks
and advantages.

O’Malley and DeLoach [22] collected a set of criteria to guide organizations in de-
ciding, whether an AOSE methodology should be adopted or an object–oriented
methodology is appropriate for a particular project. They distinguish between
Management Issues and Project Requirements. The criteria have been validated

by a survey [22]. Management issues examine the consequences an adoption of a
methodology causes for the (software producing) organization. Aspects like cost
and suitability for the organization are examined. Project requirements concen-
trate on the technical issues. The authors found a set of aspects that need to
be modeled (like interactions, distribution, etc.). These criteria are rated and a
weighted mean value is calculated. Kitchenham [20] describes the vagueness and
shortcomings of these approaches.

Cernuzzi and Rossi [6] proposed a qualitative analysis followed by a quanti-
tative rating. They constructed a so called Attributes Tree, which organizes the
found criteria in weighted branches. After rating the leafs the value of the root
can be calculated and compared to other methodologies.
The authors identified three kinds of criteria. Internal Attributes characterize the
internal structures of the agents, Interaction Attributes describe how the interac-
tions inside the system can be modeled. Finally, the Other Process Requirements
judge the design and development–process, proposed by the methodologies.

The above described proposals compared the methodologies by a screening of the
criteria, which should be compared as unbiased as possible. Dam and Winikoff [8]
evaluated methodologies by surveying inventors of the selected methodologies
and developers, who modeled a case study. They divided their found criteria
into Concepts & Properties, Modeling & Notation, Processes and Pragmatics.
The concepts and processes are suitable for a feature–based analysis. They exam-
ine the extent to which specific concepts are supported and the coverage of differ-
ent stages in development. Besides requirements, architectural/detailed design,
implementation and testing, these also include deployment and maintenance.
The other two categories examine the notation and the general management
and technical characteristics of the methodologies. Judging the appropriateness
of a notation and the mentioned characteristics is a difficult task. Dam and
Winikoff successfully addressed it by a survey approach.

Shehory and Sturm [32] developed a catalog of criteria for feature–based anal-
ysis of AOSE methodologies. They distinguished between Software–Engineering
Criteria and Agent–Based Characteristics. Their performed analysis identified
areas of improvement, to suit the needs of developers.
In [33] they recently adopted the classification from [8] and combined the criteria
from this work with their own. They give a sound overview of what a mature
methodology should offer in the field of agent–oriented software engineering.
Their set of criteria is suitable to show the drawbacks of currently proposed
methodologies and therefore gives suggestions for further development.

3 A Platform Dependent Comparison Framework

All of the approaches characterized in section 2 focus on the identification of
a superior methodology among a group of candidates. These are influenced by

previous work examining methodologies of various paradigms. The spread of e.g.
object oriented methodologies was possible, because there was a sound under-
standing of the object–oriented paradigm in itself. For agent systems we lack this
sound foundation to build methodologies upon. Even if we look at a particular
architecture - like BDI - we still see a lot of differences between the available
implementations and theories. These denote conceptual differences in the expres-
siveness for the properties of individual agents. We conclude that, in opposition
to other software engineering paradigms, which may be language independent,
the use of agent–oriented methodologies is to some degree dependent from the
used platform. Different implementations of agent architectures need different
levels of expressiveness. The suitability of a methodology is highly influenced by
the support for this expressiveness.
Having noted this, we present a framework to evaluate the appropriateness of
methodologies in relation to platforms. Figure 2 gives a visual description of our
approach. Two kinds of criteria are evaluated. Platform independent criteria can

Fig. 2. Modus Operandi for the Evaluation Framework

be examined in a feature analysis, for platform dependent ones the properties of
the implemented concepts need to be compared to properties supported in the
methodology. The match between them is examined to show their appropriate-
ness. As Figure 2 depicts, not all features of a methodology will match properties
of all platforms. For our purposes it is important to identify the differences. The
shared absence of properties is regarded as a match, since it also identifies ap-
propriateness.
Examining differences in this way allows an important adjustment to evaluation
for different purposes. As stated earlier, software producing organizations are
seldom free to choose tools and methodologies unbiased. Industry projects may
have to focus on a single platform because their client demands a dedicated plat-
form, universities may favor a special methodology and need to find a suitable

software environment. Premises of this kind are regarded by our approach. There
are three possible relations for evaluation. Evaluations of one methodology to
many platforms (1:n), several methodologies for one specific platform (n:1; see
the later given example) and a n:m scenario where n methodologies are rated to
m platforms (see Figure 2). All of these can be conducted in the same modus
operandi. Evaluations of the latter relations force the conductor to deliberate
about match vs. quality of the methodology. A good matching methodology
may not comprise all the platform independent criteria. Desirable is a method-
ology that matches a given platform and supports as many of the independent
criteria as possible.

3.1 Criteria

Before an examination following our approach can take place the relevant crite-
ria need to be identified. The selection is based on the above described directions
of comparison, but we have found a set of aspects every evaluation has to take
into account. For our framework we adopted the classification of these criteria
from [8]. Therefore, the criteria are separated into four groups. Concepts, Nota-
tion, Process and Pragmatics. Table 1 lists our selection of criteria.3 The concepts

1st Phase: screening 2nd Phase: examination

Concepts Notation Process Pragmatics

Internal Architecture* Usability Coverage of Workflows Tool Support
Social Architecture* Expressiveness Management Connectivity*

Communication* Refinement Complexity Documentation
Autonomy Dependency of Models Properties of Process Usage in Projects

Pro–activity Traceability
Distribution* Clear definition

Modularity

Table 1. Overview of the evaluated criteria3

are mostly platform dependent, because even for a concrete agent architecture
(e.g. BDI), there is no sound foundation for the properties of the single concepts.
For example the representation and expressiveness of goals varies greatly among
different implementations. The notation and process are independent from the
platform. These aspects describe the usage of a methodology. Also the prag-
matics concentrate on an examination of the support for a methodology. The
following sections will give a further explanation of the listed criteria.

The Agent–Oriented Concepts These Criteria have to be supported by
suitable methodologies.
3 Platform dependent criteria are marked with an asterisk.

Internal Architecture* The concepts which describe the internals of an agent
vary greatly between the proposed architectures. For example, BDI architec-
tures [13] describe agents with notions of mental attitudes, other approaches
use different internal representations (e.g. Subsumption-architecture [3], Soar
[35]).

Social Architecture* These concepts describe, which social models are used
to organize the multi–agent systems. Prominent models are the notions of
groups(e.g. AALAADIN [10]) or teams [15], others allow agents to offer ser-
vices, e.g. via a yellow pages directory [11].

Communication* Different Communication models have been proposed. Promi-
nent models are message based (e.g. speech acts using ontologies [12] or event
based message exchange), others use memory based (e.g. blackboard [7]) ar-
chitectures.

Autonomy The abilities of an agent to solve problems in an autonomous way,
is illustrated by the modeling of functionalities or tasks an agent can execute
on its own authority. In addition, it is helpful to express the mechanisms used
to make decisions about which actions to take.

Pro–activity It is needed to express the proactive abilities of a agent.
Distribution* It is desirable to be able to express the allocation of agents to

places in the environment.

The Notation The notation defines abstract views on the most important
aspects of the developed system. It consists of symbols, syntax and semantic.
The Usability is supported by a clearly defined and intuitively comprehensi-
ble notation that is easy to draw. To support both the requirements analysis,
the analysis and design of the system to build, an expressive notation supports
several views on the system to develop. It allows to express the functional, struc-
tural and dynamic properties, where the structure includes the data and flow of
data inside the system.
Furthermore these models should support some technical criteria to allow conve-
nient usage. During development the refinement and modularity of the single
models should be supported. Models should depend on each other and single
artifacts should be traceable. It is indispensable that syntax and semantic are
clearly defined.

The Process To evaluate the proposed development processes we compare
them to the ”Unified Process” (UP) [17]. In [33] it is already proposed to evalu-
ate the coverage of the 5 basic workflows from the UP. The selection of the UP
is arbitrary. It is suitable as a well known reference to ease comparison. Many
more complete methodologies have been developed (e.g. the Rational Unified
Process [29]), but an illustration of the coverage of these 5 basic activities is
suitable, due to the immaturity of current proposals. The individual workflows
are: Requirements (gathering and documentation of necessities), Analysis (fur-
ther examination of the problem domain), Design (defining how the software
will be implemented), Implementation (conversion of design into executables)

and Testing (development of test–cases, their execution and debugging). Fur-
thermore we consider the support for the management of an agent–oriented
software project. Currently this support mainly consists of heuristics and guide-
lines. The complexity of the process measures the necessary effort to learn and
use it. Favorable is one where the tasks of the single development steps and the
sequence of them is easy to understand and to comprehend. Finally, properties
of process note special properties, e.g. whether it is an iterative approach or
not, top–down or bottom–up, etc.

The Pragmatics The pragmatics are dominated by the impressions of the
available (CASE–)tool support. Evaluating these tools is a difficult task in it-
self. Their usability is influenced by many aspects, in our evaluation we tried to
take ergonomic aspects into account. Tools should be easy to use and support
the whole development cycle. The currently available tools allow drawing the
notations and checks for consistency. The connectivity describes the platform
dependent aspects of the tool support. When tool support is available it is desir-
able to have a connection between the design artifacts and the target platform
to use it seamlessly in development. In the most convenient case there will be
the possibility to directly generate code for target platforms. Another impor-
tant aspect is the available documentation. This has a great impact on the
usability and understanding of a methodology. Also the documentation of the
tools is important here. Reported experiences with the usage in projects are
an important factor for judging the maturity of a methodology.

3.2 Evaluation Process

The actual evaluation takes place in two steps. First, the abstract concepts set
need to be concretized with respect to methodologies and target platform(s).
Then they can be examined together with our proposed platform independent
criteria.
In opposition to the properties of notations and pragmatics, the support of con-
cepts and the properties of a proposed process can be examined by a simple
screening of the single methodologies. Evaluating the notations and pragmatics
is a difficult task in itself. It has to take objective criteria as well as ergonomic
aspects into account. Also the usability of CASE–Tools (an important part of
the pragmatics) is influenced by these. The work of Wood et al. [37] gives hints
how to examine a notation and Kitchenham [20] is also taking the examination
of tools into account. But differences are subtle and subjective to the conductor
screening specific candidates. For our example we made a case study to evalu-
ate these. Other possibilities are formal experiments or surveys according to the
available resources and purposes.

4 Example Evaluation

To give an example for an evaluation following our framework we will evaluate
how the methodologies MaSE [9], Tropos [2] and Prometheus [24] (see Figure 1)

match up the Jadex [26], [1] agent platform. Jadex, developed at the Distributed
Systems and Information Systems unit at the Computer Science Department of
the University of Hamburg, is an add–on to the popular JADE4 agent platform.
It extends JADE with sophisticated BDI mechanisms and is is under busy de-
velopment.

The Multiagent Systems Engineering Methodology (MaSE) proposes a complete
life cycle methodology for multi–agent systems. It guides the developer from the
specification of the system to the final implementation. Agents are described as
finite state machines.
Tropos has been influenced by the i* framework from Yu [39] for analysis of
the early requirements of a software system. It leads the developers to an under-
standing of an agent–oriented system as an organization of actors. These seek
to achieve goals by means of plans and have dependencies to other actors.
Prometheus has been influenced by the JACK5 agent platform. Static structures
of multi agent systems are clearly illustrated. This methodology allows very de-
tailed modeling by descriptors, which hold design specific properties.
These preselected methodologies are well documented, most mature, support
BDI–concepts and CASE–tools are available (in [8] the same selection has been
found).

We are here evaluating the suitability for only one platform. Note that this forms
an 3:1 relation (three methodologies are rated to one platform). According to
the modus operandi we first derive the relevant platform dependent criteria from
the target platform. Thereafter the concepts and process are rated by a screening
and finally the notations and tools are evaluated using a case study. The pre-
sented considerations are based on our own evaluation of a suitable methodology
for this BDI platform, which has been conducted in the context of a diploma
thesis [34].

4.1 Selection of Criteria

Considering only one platform makes it fairly easy to identify the internal, so-
cial architectures and the communication concepts. Finding the relevant criteria
means to examine the platforms and methodologies to find aspects of the plat-
forms, which need to be supported by methodologies and vice versa. For our
example evaluation we found:

– Internal Architecture:
Goals, Plans, Beliefs (BDI–Architecture) Since Jadex is focused on

the use of BDI–concepts, these have to be supported by the method-
ology. It is needed to be able to describe how goals (by which plans) can

4 http://sharon.cselt.it/projects/jade/
5 http://www.agent-software.com

be achieved and which beliefs these plans need to access. Properly de-
scribed elements allow appropriate modeling of properties to implement
using Jadex.

Capabilities This is a concept to unitize BDI systems into functional mod-
ules, as described in [4].

Events These express the reactiveness of agents. It should be possible to
model changes in the environment of single agents by events. Jadex also
supports internal events to express changes inside an agent. The kind of
event should be exactly describable to allow inferring the filters Jadex
uses to distinguish events.

– Social Architecture:
Roles Some methodologies use Roles as a concept to structure a multi agent

system and to identify single agent classes. Therefore, we need to examine
how Jadex supports their implementation.

– Communication:
Protocols These characterize the communication between the agents and

are supported by the underlying JADE platform.
Messages In Jadex the exchanged messages follow the FIPA model of agent

communication [12].

4.2 Examining the Concepts and Process

Table 2 summarizes our results for the concepts and processes. All three method-

MaSE Tropos Prometheus

Concepts:

Internal Architecture Goals* +|6=|+ +|≈|+ +|6=|+
Plans* +|≈|+ +|≈|+ +|≈|+
Beliefs* +|≈|+ +|≈|+ +|≈|+
Capabilities* –|6=|+ +|≈|+ +|=|+
Events* +|≈|+ +|≈|+ +|≈|+

Social Architecture Roles* +|6=|– +|6=|– –|=|–
Communication Protocols* +|6=|– +|6=|– +|6=|–

Messages* +|≈|+ +|≈|+ +|≈|+
Autonomy ++ ++ ++
Pro–activity + ++ ++
Distribution* +|=|+ –|6=|+ –|6=|+

Process:

Coverage of Workflows 3/5 4/5 4/5
Management n.a. n.a. n.a.
Complexity ++ ++ ++
Properties of Process for all iterative and top-down

Support – –: poor –: not well n.a.: not available
+: well ++: very well

Match Left hand side: methodology supports property: + / -
Middle: match between the properties

no match: 6= coarse match: ≈ good match: =
Right hand side: platform supports property: + / -

Table 2. Evaluation results: Concepts and Process

ologies develop a system coming from the identified goals. As opposed to MaSE,
Tropos and Prometheus use the BDI–notions throughout the whole develop-
ment cycle. In all methodologies, the modeled goal concepts differ from the ones

used in Jadex. In Prometheus and MaSE agents are associated to system goals.
Tropos is more suitable, because both system and individual goals in addition
to the contribution/decomposition of plans are described. Modeled plans in all
methodologies lack Jadex specific properties. Only Prometheus describes the in-
dividual beliefs of agents in detail, but the structures of the beliefbases differ,
causing a slight mismatch. Tropos and Prometheus support the concept of capa-
bilities. Only in Prometheus events are stated explicitly. It is also distinguished
between percepts (recognized changes in the environment) and the resulting rel-
evant events (incidents) for the system. Jadex is not aware of this distinction.
The other methodologies describe events implicit in their UML–based models
for design.
Roles are supported by MaSE and Tropos. Roles are used as means to iden-
tify the different types of agents the system will be composed of. Roles are not
explicitly supported by Jadex, they can be implemented using services. Since
both Prometheus and Jadex don’t support this specific concepts they closely
match. Protocols between agents are described in Tropos and Prometheus by
the sequence of transmitted messages. MaSE instead describes the exchange of
messages in relation to the processing inside the agents. However these represen-
tations are of the same suitability for Jadex. In MaSE and Tropos the content of
a message is not explicitly described. Only Prometheus defines special descrip-
tors to describe properties of messages. These are not compliant to FIPA ACL
messages and are therefore slightly mismatching the messages used in Jadex.
The autonomy is described in Tropos through associations between agents, their
goals and the available plans. In addition, the dependencies between the agents
are described. MaSE describes the autonomy by tasks, which an agent is capa-
ble to execute on its own responsibility. Prometheus supports a similar concept,
functionalities are at the agent’s disposal to achieve goals. Therefore, autonomy
is clearly expressed by all methodologies. The expressiveness of pro–activity is
closely related to the BDI concepts. Tropos and Prometheus are taking advan-
tage of their comprehensive support for BDI notions. The distribution and mo-
bility of agents is only displayed by MaSE, matching Jadex. Both other method-
ologies just model the acquaintance and communicational relationships between
agents.

In [2] the development phases of Tropos are shown in relation to other method-
ologies by comparing the coverage of different development phases. Figure 3
displays the coverage of the different workflows from the UP in a similar way.
To guide grading other prominent approaches are included (Gaia [38] and MES-
SAGE/UML [5] along with the AUML–Notation6). MaSE supports the devel-
opment from requirements analysis to implementation. In Tropos the analysis of
the requirements is more comprehensive. The so called early requirements of the
system are modeled according to the i* framework by Yu [39]. Prometheus is also
taking testing into account [27]. Guidance in management of an agent oriented
software project is fairly small. For the most part, merely heuristics are given.

6 http://www.auml.org

Fig. 3. Coverage of the different workflows from the UP (according to [2])

In examined methodologies the proposed progression in development is clearly
described and easy to comprehend. They all propose an iterative approach and
develop top–down, from the analysis of the requirements to the identification
and description of the single agents.

4.3 Examining the Notation and Tools – Modeling a Case Study

Beginners are guided in the usage of Jadex with a tutorial [1]. In small examples
the implementation of agent–oriented concepts is presented. We modeled the last
and most complex of these examples that combines the core concepts to a small
and therefore easy to comprehend multi agent system. Aim of this system is to
translate sentences by forwarding requests for the translation of single words to
a dedicated agent, which has access to a dictionary. This translation service is
registered at a Directory Facilitator (see [1] for details).

The made experiences in the usage lead to an impression on the expressive-
ness of notations and usability of the methodology in itself (including the tools).
Another promising approach to gain more experiences is modeling a Challenge
Exemplar as proposed in [40], which leads to a sounder understanding of the
strengths and weaknesses of the different methodologies.

MaSE Usage of this methodology showed its focus on modeling the communi-
cations. Also flow of control inside a plan is very obviously displayed. The prag-
matics are dominated by the CASE–Tool agentTool 2.0.7 It is freely available
and comfortable to use. We used it merely as a drawing tool, because connec-
tivity is only given for agent platforms which differ fundamentally from Jadex.
Methodology and tool are well documented in conference proceedings. Accord-
ing to [8] this methodology has been most widely used in university projects, no
industrial use is known.

7 http://www.cis.ksu.edu/ sdeloach/ai/agentool.htm

Tropos Examining the early requirements has not been suitable for our small
case study. These are more concentrated on the situation in which the system
to develop is needed. Process and models lead the developers to understand
the agent based application as an organization of depending individuals. This
is especially valuable for inexperienced users to get used to this new paradigm.
While lacking a specialized CASE-Tool, conventional support for UML is suitable
during design. For the earlier phases of development, specialized tools support-
ing the notation from i* can be used.8 There is no known connectivity to agent
platforms from these tools. Documentation is nearly exclusively available as con-
ference submissions, but [2] gives a comprehensive description. Tropos has been
used in a few projects (according to [8]).

Prometheus On the design level Prometheus describes implementation related
details using descriptors. Central elements are the System and Agent Overview
Diagrams. They give a intuitive overview of the system and the agents. This un-
usual and exceptional not UML based notation is supported by the Jack Develop-
ment Environment, an integrated development environment for the commercial
JACK agent platform. Code is directly generated, which means best connectiv-
ity for this platform. In addition, the Prometheus Design Tool9 (PDT) is freely
available. It is a drawing and documentation tool (no connectivity), which is
easy to use and very helpful for the use of the notation. The diagrams give a
general impression, but the associated descriptors hold the relevant information.
Being able to navigate these descriptors by the visual representations is most
valuable and allows to get a quick impression on the single elements. Besides
conference contributions there are also useful tutorial notes available [23]. Like
in MaSE, this methodology has been used in a number of university projects [8].

Result of Evaluation All three evaluated methodologies are basically capable
to support the development of applications using Jadex. A big disadvantage of
MaSE is that it does not use BDI concepts throughout the whole development
cycle. Prometheus is unique in its detailed description of the individual compo-
nents forming the agent system and the freely available CASE–Tool. In addition,
the used criteria are matching to the greatest extent, the process is nearly as ex-
tensive as in Tropos and the modeling language is slightly more comprehensive.
Therefore, it is concluded to propose the use of Prometheus for development with
Jadex. This leads to considerations how to include Prometheus in development
efforts. Since Jadex is a fairly new development there is currently no connectivity
between Prometheus and Jadex. Therefore, we evaluated the possible exchange
of detailed design information between the above mentioned PDT and the Jadex
platform. Agents in Jadex are defined by so called Agent Definition Files (ADF).
These are XML descriptions of their properties, and a set of Java classes (refer-
enced in the ADF) to implement the desired behavior. In [34] a prototype has

8 Overview of available tools at: http://www.troposproject.org/
9 http://www.cs.rmit.edu.au/agents/pdt/

been developed to transform PDT project files into a set of ADFs and vice versa.
The match is not comprehensive enough to allow automatic transformation, the
developers need to add a number of implementation dependent details to get
fully functional ADFs. Since the match between methodology and platform has
been examined areas of further improvement to allow transfer of detailed de-
sign information between modeling and platform (connectivity) are indicated by
the evaluation itself. The discovered mismatches identify, which improvements of
agent oriented concepts are needed (in methodology or platform) to cover a com-
mon expressiveness. As a partial result of the described evaluation we adopted
the Prometheus methodology for a larger research project, which proposes an
agent oriented approach to the problem domain of hospital logistics [25].

5 Conclusions

In this paper we presented a flexible framework for evaluation of agent–oriented
methodologies that takes platform specific criteria into account. This framework
is based on the observation that available agent platforms imply different con-
cepts of agency in different peculiarities. Therefore, the match between method-
ologies and platforms is examined. A methodology is well suited for a platform
if the properties of a methodology match the properties of the platform used for
development. The framework stresses that there are both platform dependent
and independent criteria to evaluate. The dependent ones need to be derived
from the proposed list of abstract concepts with respect to the candidates before
they can be examined. Evaluation has to take the nature of criteria into account.
Some are suitable for a simple feature–analysis others are more subtle and sub-
jective, their assessment is therefore a difficult task in itself. Case studies, formal
experiments and surveys are appropriate for their consideration.
Considering the above described match makes it possible to evaluate different
scenarios. It is possible to compare one methodology to many platforms (1:n),
several methodologies for one specific platform (n:1) and n:m scenarios where n
methodologies are rated to m platforms. This flexibility fits the needs of most
software producing organizations. To interpret the evaluation results correctly it
is needed to deliberate about the match vs. quality of proposals. A well suited
methodology is not only perfectly matching a target platform, but also supports
a wide range of platform independent criteria.
The usage of our framework was illustrated by an example evaluation of a group
of well known methodologies for their suitability to support development using
the Jadex platform. This example usage also illustrated how to derive platform
dependent criteria from the proposed abstract concepts set.
Future improvements to the presented framework may result from an examina-
tion whether it is useful to consider application dependent criteria. For software
producing organizations the problem domain according to a concrete project
may have impact on the selection of platforms and methodologies.

References

1. Braubach L. und Pokahr A. Jadex Tutorial - Release 0.9, 2003.
http://sourceforge.net/projects/jadex

2. Bresciani P., Giorgini P., Giunchiglia F., Mylopoulos J., Perini A. Troops: An
agent-oriented software development methodology, Technical Report DIT-02-0015,
University of Trento, 2002.

3. Brooks R. ”Elephants Don’t play chess”. Robotics and Autonomous Systems, 6:3-
15, 1990.

4. Busetta P., Howden N., Rönnquist R. und Hodgson A. ”Structuring BDI Agents
in Functional Clusters”. in N. R. Jennings and Y. Lesperance, Intelligent Agents
VI. Springer Verlag, Berlin, 1999.

5. Caire G., Leal F., Chainho P., Evans R., Garijo F., Gomez J., Pavon J., Kearney
P., Stark J. and Massonet P. ”Agent oriented analysis using message/uml”. In
Agent-Oriented Software Engineering (AOSE), 2001.

6. Cernuzzi L. und Rossi G. ”On the evaluation of agent oriented modeling methods”,
In Proc. of Agent Oriented Methodology Workshop, Seattle, 2002.

7. Corkill D. D. ”Blackboard Systems”, AI Expert, 6(9):40-47, September, 1991.
8. Dam K. H. and Winikoff M. ”Comparing Agent-Oriented Methodologies”, In Proc.

of the Fifth Int. Bi-Conference Workshop on Agent-Oriented Information Systems
(at AAMAS03), 2003.

9. DeLoach S. A. ”Analysis and design using MaSE and agentTool”. In Proc. of the
12th MAICS, 2001.

10. Ferber J. und Gutknecht O. ”A Meta-Model for the Analysis and Design of Organi-
zations in Multi- Agent Systems”, In Proc. of the Third Int. Conf. on Multi-Agent
Systems (ICMAS98) Paris, France, 1998.

11. Foundation for Intelligent Physical Agents. FIPA Abstract Architecture Specifica-
tion, SC00001L, 2002. http://www.fipa.org/specs/fipa00001/

12. Foundation for Intelligent Physical Agents. FIPA ACL Message Structure Specifi-
cation, SC00061G, 2002. http://www.fipa.org/specs/fipa00061/

13. Georgeff M. and Lansky A. ”Reactive Reasoning and Planing: An Experiments
With a Mobile Robot”, in Proc. of the 1987 National Conference on Artificial
Intelligence (AAAI 87), 1987.

14. Henderson–Sellers B. and Gorton I. ”Agent-based Software Development Method-
ologies”, White Paper, Summary of Workshop at the OOPSLA 2002, 2003.
http://www.open.org.au/Conferences/oopsla2002/index.html

15. Hodgson A., Rönnquist R., Busetta P. Specification of Coordinated Agent Behavior
(The SimpleTeam Approach), Technical Report 99-05, Agent Oriented Software
Pty. Ltd., 1999.

16. Iglesias C.A., Garijo M. und González J.C. ”A Survey of Agent-Oriented Method-
ologies”. In Intelligent Agents V – Proc. of the Fifth Int. Workshop on Agent
Theories, Architectures, and Languages (ATAL-98), 1999.

17. Jacobson I., Booch G., Rumbaugh J. The Unified Software Development Process.
Object Technology Series. Addison Wesley, 1999.

18. Jennings N.R. ”On Agent–Based Software Engineering”, Artificial Intelligence,
117(2), 2000:277.

19. Jennings N.R. und Wooldridge M. Agent-Oriented Software Engineering, Hand-
book of Agent Technology AAAI/MIT Press, 2000.

20. Kitchenham B. DESMET: A method for evaluating Software Engineering methods
and tools, Technical Report TR96-09, ISSN:1353-7776, 1996.

21. Luck M., McBurney P. und Preist C. Agent Technology: Enabling Next Generation
Computing: A roadmap for agent–based computing. AgentLink report, ISBN 0854
327886, 2003. http://www.agentlink.org/roadmap/index.html

22. O’Malley S. A. and DeLoach S. A. ”Determining When to Use an Agent-Oriented
Software Engineering Paradigm”, In Proc. of the AOSE-2001, 2001.

23. Padgham L. ”Design of Multi Agent Systems”, Tutorial at Net.ObjectDays, Octo-
ber 7-10, 2002, Erfurt, Germany, 2002.

24. Padgham L. und Winikoff M. ”Prometheus: A Pragmatic Methodology for Engi-
neering Intelligent Agents”, in Proc. of the workshop on Agent-oriented method-
ologies at OOPSLA 2002.

25. Paulussen T. O., Zöller A., Heinzl A., Pokahr A., Braubach L., Lamersdorf W.:
”Dynamic Patient Scheduling in Hospitals” in: Agent Technology in Business Ap-
plications (ATeBA-04), 2004.

26. Pokahr A., Braubach L. and Lamersdorf W. Jadex: Implementing a BDI-
Infrastructure for JADE Agents, EXP – in search of innovation, 3(3):76-85, 2003.
http://sourceforge.net/projects/jadex

27. Poutakidis D., Padgham L., Winikoff M.: ”Debugging multi-agent systems using
design artifacts: The case of interaction protocols”. In Proc. of the First Int. Joint
Conf. on Autonomous Agents and Multi Agent Systems (AAMAS’02), 2002.

28. Rao A. und Georgeff M. ”BDI-agents: from theory to practice”. In Proc. of the
First Intl. Conf. on Multiagent Systems, 1995.

29. Rational Software White Paper. Rational Unified Pro-
cess: Best Practices for Software Development Teams, 2001.
http://www.rational.com/products/whitepapers/100420.jsp

30. Rumbaugh J., Jacobson, I. und Booch, G. The Unified Modeling Language Refer-
ence Manual, Addison-Wesley, 1999.

31. Rumbaugh J., Blaha M., Premerlani W., Eddy F. und Lorensen W. Object–
Oriented Modeling and Design, Prentice–Hall, 1991.

32. Shehory O. and Sturm A. ”Evaluation of modeling techniques for agent-based
systems”. In Proc. of the 5th Int. Conf. on Autonomous Agents, ACM Press, 2001.

33. Sturm A. and Shehory O. ”A Framework for Evaluating Agent-Oriented Method-
ologies”, Workshop on Agent-Oriented Information System (AOIS), Melbourne,
Australia, 2003.

34. Sudeikat J. ”Betrachtung und Auswahl der Methoden zur Entwicklung von Agen-
tensystemen”, diploma thesis, in German, HAW Hamburg, 2004.

35. Tambe M. ”Agent Architectures for Flexible, Practical Teamwork”. In Proc. of the
Nat. Conf. on Artificial Intelligence, AAAI, 1997.

36. Tveit A. ”A survey of Agent-Oriented Software Engineering”. In: NTNU Computer
Science Graduate Student Conference, 2001.

37. Wood B., Pethia R., Gold L.R. and Firth R. A guide to the assessment of software
development methods, Technical Report 88-TR-8, Software Engineering Institute,
Carnegie- Mellon University, 1988.

38. Wooldridge M. J., Jennings N. R. und Kinny D. ”The Gaia methodology for
agent-oriented analysis and design”. Autonomous Agents and Multi-Agent Sys-
tems, 3(3):285–312 , 2000.

39. Yu, E. ”Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering”. In Proc. of the 3rd IEEE Int. Symp. on Requirements Engineering,
1997.

40. Yu E. and Cysneiros L. M. ”Agent-Oriented Methodologies - Towards A Challenge
Exemplar”. CEUR Workshop Proceedings, 2002.

