
Lifting XML Schema to OWL

Matthias Ferdinand1, Christian Zirpins1, and David Trastour2

1 VSIS Group, University of Hamburg, Germany
{6ferdina,zirpins}@informatik.uni-hamburg.de

2 Hewlett-Packard Laboratories Bristol, UK
david.trastour@hp.com

Abstract. The Semantic Web will allow software agents to understand
and reason about data provided by Web applications. Unfortunately, for-
mal ontologies, needed to express data semantics, are often not readily
available. However, common data schemas can help to create ontologies.
We propose mappings from XML Schema to OWL as well as XML to
RDF and show how web engineering can benefit from the gained expres-
siveness as well as the use of inference services.

1 Introduction

The Semantic Web will allow software agents to understand, share and reason
about data that is provided by Web application systems. Formal conceptual
models, or ontologies, are necessary to express the semantics of the data. Un-
fortunately, semantic information is not usually available in such a form, but
scattered across documentation and various software components. Because de-
veloping ontologies from scratch is costly and difficult, one should try to reuse
this semantic information as much as possible. Thanks to their formal nature,
document schemas like XML Schema provide a good basis for developing or re-
engineering ontologies (see e.g. [1, 2] for a comparison of ontology languages, web
standards and markup languages).

In this work, we focus on extracting semantic information out of document
schemas and propose a mechanism to lift XML Schema to the Web Ontology
Language (OWL). While, for example, concrete translation procedures from OIL
or XOL to XML Schema have been developed by [3, 4], we specify and imple-
ment a mapping in the reverse direction producing an OWL ontology. In order
to apply this semantic meta-information for reasoning on instance data, XML
documents have to be mapped to RDF, bridging the gap between those models.
General solutions typically require changes to XML or RDF: Melnik [5] devel-
oped an RDF interpretation for XML documents. In [6, 7] a formal model and
an architecture have been developed that allow uniform access to both types of
documents. We propose another such mapping that does not require changes to
the standards and incorporates XML Schema type information. Subsequently,
based on our two mappings, we show that the engineering of XML based web
applications can benefit from the high expressive power OWL has to offer and
from inference services such as classification or satisfiability checking.



In the following, sect. 2 proposes two mapping concepts from XML to RDF
and from XML Schema to OWL that allow lifting data from syntax to represen-
tation. Sect. 3 shows how reasoning techniques on such representations can be
applied in web engineering. Finally, sect. 4 concludes.

2 From syntax to representation: Mapping Concepts

In this section, we propose a general binding of XML structured data to Semantic
Web languages. The approach is twofold: XML documents are translated into
RDF graphs and XML Schemas are lifted to OWL ontologies. This applies to
all XML documents that conform to an XML Schema.

The first part of the concept concerns the XML to RDF mapping. XML is
a language that defines a generic syntax to store and exchange documents by
means of a tree-based structure. Although RDF has an XML-based syntax, XML
and RDF serve different purposes and have been developed separately within the
W3C, which lead to different modelling foundations.

XML is based on a tree model where only nodes are labeled and the out-
going edges are ordered. This model originates from semi-structured data and
databases. In contrast to this, RDF is based on a directed graph model where
edges have labels but are unordered. It distinguishes between resources (e.g. car)
and properties (e.g. car color) while XML does not (e.g. both would be elements).
This model originates from knowledge representation languages such as Frames
[8] and description logics (DL).

To bridge the gap between both forms of data representation, we developed
a procedure that transforms XML documents to RDF data models. In order to
keep compatibility with existing documents and applications, this mapping does
not require any change on either XML or RDF specifications (however, so-called
mixed content models of XML are not fully supported). Structural differences
of the data models represent no obstacle, as trees are a specialisation of graphs.
We make a distinction between (1) elements that have sub-elements and/or
attributes, and (2) attributes and elements that carry only a data type value.
These two categories of components correspond respectively to XML Schema
declarations associated with a complexType or a simpleType. The mapping is
performed by the following procedure:

Initially, an RDF resource Document is created – representing the XML doc-
ument itself. Then, for each sub-element and attribute of the element that is
currently processed (starting with the root element), an RDF property on the
RDF resource created before in the previous step is created. If we encounter
a data type component (2nd category above), its data value is represented as
an RDF literal on the respective property. If we encounter an object component
(1st category above), an anonymous RDF resource is created and assigned as the
value of the respective property. Then, this component is processed recursively.

As we also want to map XML Schema, it is desirable to transparently incor-
porate the type information specified in the corresponding schema. To facilitate
this, we presume that an XML Schema-aware processor has validated the XML



document, which results in type information represented in a Post-Schema Val-
idation Infoset (PSVI). We will see that each XML Schema complexType is
mapped into an OWL class. Hence each mapped RDF resource is of rdf:type
the OWL class corresponding to the PSVI retrieved complexType.

The second part of the concept concerns the XML Schema to OWL mapping.
XML Schema and OWL solve different problems: XML Schema provides means
to express and constrain the syntax and structure of XML documents. OWL,
in contrast, is intended for modelling the semantic relationships of a domain.
However, there is an interesting overlap between the two, as both of them have
an object-oriented foundation. XML Schema has the notion of class hierarchy
and specialisation, and OWL is based on the notion of Frames. Although they
accomplish it at two different levels of abstraction, the languages share the goal
of defining common vocabularies and structures to support electronic exchange
of information. Our mapping approach that complements the one seen before,
capitalizes on these similarities. In the following, we give an overview of the
fundamental choices. The mapping procedure of a complete XML Schema is
composed of the mapping of its different components.

Main Concepts: Each XML Schema complexType is mapped to an
owl:Class. Each element and attribute declaration is mapped to an
OWL property. More precisely, elements of simpleType and all attributes
are mapped to an owl:Data typeProperty; elements of complexType are
mapped to an owl:ObjectProperty. Finally, the schema root element of a
schema is mapped to an OWL Class of name ’targetNamespace + #Schema’.

Model Groups: Model group definitions and attribute group definitions are
specialisations of complex types since they only contain element respectively
attribute declarations. Hence, they are also mapped to OWL classes.

Specialisation: In object-orientation, inheritance mechanisms represent a cen-
tral modelling tool which is used to express ”is-a” relationships between
classes. The literature differentiates between various types of inheritance, two
of the most important ones are inheritance by restriction and inheritance by
extension. XML Schema supports both of these ways by corresponding type
derivation constructs and we both map them to rdfs:subClassOf in OWL,
its only inheritance mechanism. XML Schema offers the substitutionGroup
construct which specifies that an element can be replaced by a set of other
elements in the instance document. Analog to the type derivation mecha-
nisms, this construct can be interpreted as a way to express a specialisation
of elements and thus is mapped to an OWL subPropertyOf.

Type and Cardinality: In XML Schema, ”Particles” (resp. ”AttributeUses”)
are used to associate a type and cardinality to a local element (resp. a lo-
cal attribute).Because these definitions have a local scope, we map them
to the intersection of two property restrictions: one restricting the type
with owl:allValuesFrom, the other restricting the cardinality with either
owl:minCardinality, owl:maxCardinality, or cardinality. The two re-
strictions apply to the same property (i.e. the one corresponding to the
element or attribute).



Compositors: XML Schema offers three compositors to combine elements,
sequence, all and choice. They are mapped to appropriate OWL boolean
expressions. The difference between sequence and all is purely syntac-
tic; semantically they are both conjunctions and are both mapped to an
owl:intersectionOf constructor. The mapping of the choice compositor
is more verbose since there is no direct equivalent in OWL to an exclusive-
OR. Hence, it needs to be constructed with a boolean expression (with
owl:intersectionOf, owl:unionOf and owl:complementOf).

Global Elements: Global element and attribute declarations are mapped sim-
ilarly to local ones. Associated restrictions are added to the Schema class.

Identifiers are mapped from XML Schema to URIs by concatenating
the targetNamespace URI, the # character and the component’s local
name. Problems can occur due to the fact that XML Schema partitions
the targetNamespace into distinct so-called symbol spaces, one for each kind
of definition or declaration. To prevent naming conflicts in OWL, the mapping
process applies an appropriate renaming pattern to the affected components.

As a detailed discussion is out of scope here, we can only briefly note that we
also found mappings for other language constructs of less common interest. How-
ever, because of a limited expressiveness in OWL or because the construct would
not be appropriate, we also had to skip some non-essential language components
like abstract, final, block, default, form, wildcards, identity-constraint def-
initions and complexTypes derived by restriction from simpleTypes.

3 Reasoning support for web engineering

There are a number of promising applications for the mapping concept in Web
engineering. In particular, it allows enhancing traditional XML languages and
tools by the capabilities of OWL reasoners. Here, we distinguish support ca-
pabilities at design time and runtime of web applications. At design time, we
see two principal usages for the mapping. On the one hand, ontologies can be
extracted out of existing XML Schemas. This skeleton ontology can then be ex-
tended using OWL expressions. On the other hand, the mapping can support
schema design. Analogous to the use of reasoners to design ontologies [9], they
are useful to design XML Schemas. By using owl:equivalentClass instead
of rdfs:subClassOf for the mapping of complexType, an OWL reasoner can
infer implicit subsumption relationships, thus identifying super-types of some
complexTypes. This fosters reuse and limits the class proliferation when large
number of classes are encountered. An OWL reasoner could also help to check
the compatibility of two independently developed schemas. DL based reasoners
are the most suited for this type of operation as they can do efficient inference
on classes. At runtime, the XML mapping into RDF can be used to do inference
and semantic validation of XML data. Once translated into RDF, the data can
be classified with an OWL reasoner. The classification could lead to discover
implicit class membership or implicit relationships between objects. Finally, se-
mantic validation can be performed by looking for unsatisfiable concepts.



4 Conclusion

We have proposed a general solution for automated binding of XML structured
data to Semantic Web languages. General procedures have been shown to map
XML documents to RDF graphs and XML Schemas to OWL ontologies. Subse-
quently, supporting techniques for the engineering of web applications have been
presented that get possible by integrating mapping results with OWL reasoners.

To underpin the concepts, we offer a Java software toolkit that implements
the mapping process 3. In terms of engineering concepts, we note that we incor-
porated the RACER DL reasoner [10] and used its inference services to realise
a real-world e-business Web application in the context of RosettaNet [11].

By automatically generating formal conceptual models from semi-structured
data, our approach supports the automated bootstrapping of ontology develop-
ment from existing XML Schemas, speeding up the adoption of Semantic Web
technologies. It opens up to a wide range of XML based web applications the
expressive power of OWL as well as the potentials of inferencing services. Unlike
most traditional techniques (e.g. hard coded validation), semantic constraints
can be written in a formal, well-documented and reusable fashion that can be
applied to various tasks such as semantic validation of XML instances.

References

1. Fensel, D.: Relating Ontology Languages and Web Standards. In: Modelle und
Modellierungssprachen in Inf. und WiInf., St. Goar, Fölbach-Verlag (2000)

2. Gil, Y., Ratnakar, V.: A comparison of (semantic) markup languages. In: Proc.
15th Intl. Florida Artificial Intelligence Research Society Conf., May 14-16, 2002,
Pensacola Beach, AAAI Press (2002) 413–418

3. Klein, M., Fensel, D., van Harmelen, F., Horrocks, I.: The Relation between On-
tologies and XML Schemas. Linköping Electr. Art. in Comp. and Inf. Sci. 6 (2001)

4. Rami, R., Nabila, B.: Translation Procedure to Clarify the Relationship Between
Ontology and XML Schema. In: Proc. Intl. Conf. on Internet Computing (IC’2001),
Las Vegas, CSREA Press (2001) 164–170

5. Melnik, S.: Bridging the Gap between RDF and XML (Accessed 1 Feb 2004)
http://www-db.stanford.edu/~melnik/rdf/fusion.html.

6. Patel-Schneider, P., Simon, J.: The Yin/Yang Web: XML Syntax and RDF Se-
mantics. In: Proc. 11th Intl. WWW Conf. (WWW11), ACM (2002)

7. Patel-Schneider, P.F., Simon, J.: Building the Semantic Web on XML. In: Proc.
1st Intl. Semantic Web Conf. 2002 (ISWC’02). (2002)

8. Minsky, M.: A Framework for Representing Knowledge. Technical report, Mas-
sachusetts Institute of Technology (1974) MIT-AI Laboratory Memo 306.

9. Bechhofer, S., Horrocks, I., Goble, C., Stevens, R.: OilEd: a reason-able ontology
editor for the semantic web. In: Proc. DL-2001, CEUR Elct. Proc. vol. 49 (2001)

10. Haarslev, V., Möller, R.: Description of the RACER system and its applications.
In: Proc. DL-2001, CEUR Elct. Proc. vol. 49 (2001)

11. Trastour, D., Preist, C., Coleman, D.: Using Semantic Web Technology to Enhance
Current Business-to-Business Integration Approaches. In: Proc. EDOC 2003, IEEE
(2003) 222–231

3 http://www.servicecompostion.org/owlmap.php


