

A SERVICE ORIENTED APPROACH TO INTER-
ORGANISATIONAL COOPERATION

Christian Zirpins 1, Winfried Lamersdorf 1 and Giacomo Piccinelli 2
1 Distributed Systems Group, University of Hamburg, Germany
2 Software Engineering Group, University College London, UK

Abstract: Many E-business applications are based on increased cooperation between
various organisational units and partners. System support for such applications
can be provided using concepts from the area of service oriented computing –
thus lifting inter-organisational integration to a higher level of effectiveness
and efficiency. E-services provide means for modularisation of arbitrary or-
ganisational assets into components that can be dynamically offered, discov-
ered, negotiated, accessed, and composed in an open application environment.
Technically, E-services are software systems that are implemented on top of
conventional information and communication technology. As an important
step into that direction, Web Services have laid the foundation for interoper-
able communication between arbitrary systems. This paper introduces an ap-
proach to plan, build, and run such application-level services efficiently.
Therefore, a fundamental notion of service, originating from distributed sys-
tems, is being extended by a specific concept of cooperative interaction proc-
esses. Accordingly, an application-level service model and corresponding ser-
vice engineering mechanisms are proposed and realised as system software
middleware based on OGSA Web Services and BPEL4WS processes.

Key words: E-Business, Inter-Organisational Integration, Cooperative Interaction Proc-
esses, Electronic Services, Workflow, Web-/GRID Service Architecture

1. INTRODUCTION: SERVICE ORIENTED
DISTRIBUTED APPLICATIONS

Various application domains like electronic business, -government and
-education face recurrent cooperation scenarios where a constant change of

2 Christian Zirpins, Winfried Lamersdorf and Giacomo Piccinelli

participants is a predominant characteristic. Typical examples are business-
to-business integration problems (Medjahed et al., 2003) that focus on the
dynamic relationship between one company and a set of frequently changing
partners. Also, situations like flexible outsourcing of business functions or
dynamic supply chain management face similar recurring types of coopera-
tion with interchangeable partners. For example, a company might contract
out freight logistics to various carriers or forwarding agencies changing over
time. The rationale for this kind of relationship is, on the provider-side, to
expose new revenue streams (e.g. providing freight logistics on demand)
and, on the customer-side, to seek for new efficiencies (e.g. outsourcing
freight logistics if profitable) in a form that allows for constant optimisation
of partnership settings. Strategic planning of cooperation types, tactical
preparation of cooperation settings, as well as operational control of func-
tional cooperation are among the main challenges to be tackled here.

In more advanced scenarios, the patterns of functional cooperation are of-
ten a subject of variation too, because different partners pose different opera-
tional requirements that have to be negotiated between the participants be-
forehand. For example, a customer cooperates with various carriers that all
move goods but impose different procedures of payment. Moreover, when
broadening the scope, a party often faces multiple of such cooperative rela-
tionships that are in some cases mutually dependent. In order to preserve
these dependencies, they have to be made explicit independently from indi-
vidual partners. For example, a forwarding agency has to ensure that it can
move goods of various individual customers by relying on alternating carri-
ers under contract.

1.1 Extending the service notion

Henceforth, the notion of a service is used to refer to such recurring co-
operation scenarios between changing autonomous participants. In order to
substantiate this notion, one can benefit from former work in distributed in-
formation systems: Revisiting ODP concepts (ISO/IEC-JTC1/SC21, 1995),
we distinguish the constant class of cooperation (service type) from changing
cases of cooperation (service instance). Service instances can vary in the
conditions of cooperation referred to as service properties (e.g. QoS) that
arise from the characteristics of actual participants. Those participants are
typed by roles, indicating expected cooperative behaviour within service
relationships. Providers offer type and properties of instances they are will-
ing to participate in. Clients observe offers of a specific type, choose a pro-
vider with respect to service properties and engage in service instances.

Specific interdependencies between services are often referred to as ser-
vice composition. In this case, a participant relates (composes) services in

A Service Oriented Approach to Inter-Organisational Cooperation 3

which he acts as a provider (composite services), to services in which he acts
as a client (service components), stating how characteristics of the composite
service are put down to characteristics of service components. In terms of
characteristics, services on application-level are more complex then those
found in classical distributed object systems. Apart from the ‘semantic’ rea-
son (e.g. move goods), the ‘syntactic’ cooperation process (e.g. customer
orders carrier confirms and ships goods customer pays) is among the
predominant service characteristics. In particular, the focus here is on the
interaction patterns, that is, the communication processes between roles.

The field of problems faced by organisations in terms of service partici-
pation can be structured into strategic, tactical and operational challenges.
On the strategic level, exposing and expressing semantic and syntactic as-
pects of service types and their interdependencies requires expressive models
and systematic design methodologies (service modelling) taking under ac-
count the (technological and conceptual) context of participants. For exam-
ple, a forwarding agency needs models to express a) meaning and procedure
of a logistics service it provides b) dependencies of the logistics service on a
freight service that it uses and c) mappings of the service interactions to its
internal business information systems. On the tactical level, service types
have to be constantly maintained to keep track with organisational change
(service type adaptation). Also on this level, partners have to be located for
the types of service a participant is interested in as client (service discovery)
or provider (service publication). On the operational level, partners have to
be matched (by providers) and chosen (by clients) for service types (service
aggregation). In some cases, providers additionally have to choose compo-
nent service types matching the clients of composite services beforehand
(service composition). During the actual service interaction procedure, terms
and conditions of the service have to be ensured (service coordination and
control). Additional flexibility can be reached by dynamic changes of ser-
vice instances (service instance adaptation).

Generally for all levels, system software middleware is needed to arrange
organisational environments of information- and communication technology
(ICT) into a cooperative information system (Michelis et al., 1997) which
realise services and provide support for the various tasks described above.
We refer to such a middleware as service management system and to the
joint tasks of planning, building, and running of service oriented distributed
applications as service engineering.

1.2 Current state of technology

Current techniques of service oriented computing are strongly focussed
on technology. While application-level (i.e. business) service support is out

4 Christian Zirpins, Winfried Lamersdorf and Giacomo Piccinelli

of their scope, they nevertheless pave the way towards it. The emerging Web
Service standard (Tsalgatidou and Pilioura, 2002) provides interoperability
between heterogeneous systems by leveraging the expressive power of XML
to specify operational interfaces that can be accessed using open internet
communication. Thus, organisations can externalise their internal informa-
tion systems as web enabled components. Those components provide inter-
action endpoints (subsequently called ports) to participate in automated in-
ter-organisational cooperation. Concerning cooperation procedure, the ser-
vice oriented model adopted by Web Services only defines a very basic type
of interaction (i.e. ‘broker triangle’). However, web service flow standards
like BPEL4WS (Curbera et al., 2002) provide the means for individual defi-
nitions of basic interaction processes. This is the crossing point to more gen-
eral research on cooperative, inter-organisational interaction-processes (e.g.
(Baïna et al., 2003, Bussler, 2002, Schuster et al., 2000)) and workflow (e.g.
(van der Aalst, 1999, Colombo et al., 2002, Chen and Hsu, 2000)), where
several practical approaches for application-level services are located (e.g.
(Mecella et al., 2001, Perrin et al., 2003, Casati et al., 2001)).

1.3 The Fresco Project

The FRESCO project is about foundational research on service composi-
tion (Piccinelli et al., 2003b). Its goal is to develop a framework of concepts
and technologies that support organisations in playing the provider role for
composite services. As a basis for composition, the focus is on the compo-
nents first. Subsequently, a fundamental service model was developed that
describes basic application-level services as classes of recurring cooperative
interactions. The model was then implemented as a generic service engineer-
ing environment built on the Web Service family.

In the remaining parts of this paper, the Fresco approach will be detailed:
After the second part sketches a basic blueprint of our service engineering
concepts, the third part introduces the Fresco Toolkit implementation. Fi-
nally, a summary and an outlook are given.

2. SERVICE ENGINEERING IN FRESCO

Fresco service engineering is based on a model that defines services as
structured sets of cooperative interaction procedures. This model implies a
specific architecture of service oriented applications that builds on an open,
distributed component environment with service-enabling extensions. Sub-
sequently, a service engineering environment provides a concise framework
to plan, build, and run such service oriented distributed applications.

A Service Oriented Approach to Inter-Organisational Cooperation 5

2.1 Service model

The FRESCO Service model (Piccinelli et al., 2003a) defines a view on
services that is provision-oriented and service-centric. Cooperation proce-
dures that constitute atomic, self-contained parts of a service-relationship are
exposed by so called capabilities. In particular, capabilities represent pur-
pose, interaction logic, and resulting artefacts of the cooperation between
organisational roles. Thereby, capabilities define additional coordinative
roles that introduce a level of indirection between participating roles. Unlike
meta-level protocols, capabilities take the position of first-class participants
(i.e. coordinators) that may be just virtually or effectively enforced. A ser-
vice is made up by a set of such capabilities.

Figure 1. Fresco service model

An important feature of the model is a separation of capabilities in terms
of service content and -provision. Content reflects the purpose of a service
(e.g. moving goods). It is assumed that it arises from specific resources of
the provider (e.g. internal processes, knowledge, people, machines, etc.). To
represent service content, cooperation procedures, featuring interactions with
such resources, are explicitly exposed as meaningful units of content (e.g.
transport tracking…) by capabilities referred to as assets. Assets are degen-
erated in the sense that they don’t represent cooperative interaction between
roles but monologues of the provider (i.e. binding (Bussler, 2002)) that have
to be provided to clients indirectly by other capabilities. Assets are grouped
into a service core representing the complete content.

Provision addresses procedures that drive a service and make content
available (e.g. negotiating terms and conditions, incorporating assets, etc.),
whereby control is exclusively and proactive. Service provision capabilities
(hence called “capabilities”) are grouped around core assets in a layer called
service shell. Within a shell, capabilities are mutually interrelated and share

6 Christian Zirpins, Winfried Lamersdorf and Giacomo Piccinelli

a common view on roles and provision-relevant information. Interrelations
embody the overall behaviour of provision by defining the global interplay
of capabilities. A service is fully characterised by defining the basic core
and, above all, the enabling shell (Figure 1). Our main focus is on the later.

To realise this service model, associated technology has to focus on a) an
architecture mapping the service notion to organisational ICT and b) an envi-
ronment of mechanisms that facilitate service engineering tasks on top of it.

2.2 Service oriented architecture

For technology mapping we define a framework referred to as service-
oriented architecture (SOA). It provides a layer of abstraction that is as-
sumed to wrap around diversified ICT systems in order to provide a homo-
geneous platform for service management. Service types are defined as
schemas with respect to the SOA. Service instances can be run in any envi-
ronment implementing the SOA framework.

In SOA, we assume that all organisational ICT resources of any role (e.g.
client’s ERP, provider’s DBMS…), providing ports for service-related inter-
actions, are represented by means of a homogeneous component model.
Shell capabilities appear as glue between ports that reflects purpose, interac-
tion logic and result. We represent this glue using workflow concepts based
on the WfMC reference model (WfMC, 2002). Common patterns are pre-
scribed to define capabilities as well as their structuring and interrelations by
means of the workflow language XPDL, resulting in a service schema.

In particular, a capability maps to a set of workflow schemata describing
a self contained unit of interaction. Ontology-associations define the purpose
of interaction logic that emerges from the flow of interaction activities and
results in data artefacts. Interaction activities can be defined for a participant
(i.e. a role-associated component-port) to express cooperative procedure or
for another capability workflow to express capability interrelation. Coherent
sets of capability workflows are grouped together into packages with respect
to a self contained task (e.g. negotiation capability, payment capability). The
shell is given as a top-level package, where each capability is abstracted as a
component type itself that realises the enclosed interaction flows and has a
specific role assigned to it. Thus, various coordination concepts can be ex-
pressed including centralised- (orchestration) and distributed scenarios.

In brief, a schema specifies a partitioned set of highly interrelated com-
ponents with precise interaction behaviour, where a subset A represents in-
teracting participants and a subset B represents and enforces their interaction
patterns. Service engineering is about planning, building and running B
based on A.

A Service Oriented Approach to Inter-Organisational Cooperation 7

2.3 Service engineering environment

Our concept of service engineering defines a set of basic engineering
mechanisms that allow building customized extensions upon it. Besides
modelling, the main problems addressed here are adaptation, aggregation,
and coordination.

As services are inherently complex, we anticipate that support will be
needed for their design, that is, a graphical service modelling language and
tool, which help developers in creating service schemata. This is supposed to
be the initial step of the service lifecycle, performed by the provider role.

Service schema management provides the functionality to process the
schema programmatically. Beside storing and retrieving it, adaptation is its
vital task. We adopt a rule based approach that provides a precise and sys-
tematic way to change schemata automatically. Back in the service lifecycle,
the schema is subject of continuous static adaptation until eventually brought
to action.

Figure 2. Service Engineering Environment

Then, it’s the task of service aggregation management to create a service
instance, based on the schema and a mapping of roles to actual participants.
The main problem is to allocate resources of the participants according to the
components associated to their roles, thereby optimising resource allocation
while guaranteeing a constant and consistent flow of service procedures even
when schema or participants change during provision. Initially, at least the
provider is known and resources for an initial capability have to be allocated.

Service engines are components that manage the aggregation and coordi-
nation of capabilities they realise. The crucial problem is for participants to
implement the capabilities of an engine while keeping the service context
including associations to other engines and a homogeneous view on roles

8 Christian Zirpins, Winfried Lamersdorf and Giacomo Piccinelli

and data. We propose a generic implementation framework that can be pa-
rameterised with executable specifications generated from the schema. When
all engines reach a final state the instance expires and the service lifecycle
continues with a new round of static schema adaptation.

In addition to the core functions introduced so far, three other mecha-
nisms are considered particularly useful: service monitoring to integrate the
measurements of distributed sensors deployed throughout the service com-
ponents into a coherent view of the overall service status, security manage-
ment to allow controlling component access and delegating access privi-
leges, and, finally, type management that defines a type system for generic
software components and allows discovering compatibility and equivalence
between them to support the handling of resources during service design and
aggregation. Figure 2 gives an overview of all mechanisms and their respec-
tive relations.

A vital characteristic of the overall engineering environment lies in the
fact that all management mechanisms are first class components themselves.
Thus changes can a) be made at provision time and b) arise from capabilities
themselves. For example, a capability can lead to dynamic changes of par-
ticipants (e.g. a new participant is introduced as a result of a brokerage capa-
bility) or dynamic schema adaptation (e.g. a payment procedure is changed
as the result of a negotiation capability). Note, that this allows extending the
service engineering mechanisms by realising them as capabilities.

3. THE FRESCO TOOLKIT

As a proof of concept, we developed the core functions of service schema
design, adaptation, aggregation, and coordination in a prototype environ-
ment referred to as the Fresco Toolkit (FrescoTK) 1. This implementation is
structured into parts related to service schema and instance management.

3.1 Service schema management

The focus of service schema management in Fresco is on the representa-
tion and organisation of interactive procedures that make up a service. A
schema defines the complete shell of a service including roles and resources
as well as the mapping of procedures to capabilities. More precisely, a ser-
vice schema is realised as a structured transformable set of abstract work-
flow definitions. We use XPDL, where generic workflow elements are de-
fined in the context of packages that can again refer to other packages thus

1 FrescoTK is available under academic free licence at www.servicecomposition.org

A Service Oriented Approach to Inter-Organisational Cooperation 9

allowing the definition of coherent structures. A service schema contains a) a
root package representing the service shell and declaratively defining the
service capabilities, b) one set of packages for each capability that defines its
interactive procedures, and c) one context package that defines a common
context of roles, data structures, and resources.

The FrescoTK Schema Manager component (Figure 3) holds generic
specifications of various service schemata and makes them programmati-
cally accessible. Its vital characteristic is the ability to apply a variety of
transformations to them that allow for controlled changes of service struc-
tures as well as for the logic of interactive procedures. Moreover, it is possi-
ble to change the representation of procedures into executable format.

Figure 3. FrescoTK service schema tool

Evolutionary adaptation is supported by means of a language for change
rules that are enforced by a rule engine within the schema manager. It allows
matching arbitrary patterns in XPDL workflow process descriptions and re-
moving or replacing those matches with newly created process elements into
self contained revisions. However, the procedural logic of capability compo-
nents, given in XPDL, has to be transformed into a format that can be exe-
cuted by an engine. Those engines are used as active components that en-
force provision procedures at runtime (see 3.2). The transformation is based
on the fact that most workflow languages share a set of core concepts with
common semantics (see (van der Aalst, 2003)). We chose the emerging
BPEL4WS standard as our execution format and defined a mapping to it
from XPDL (a full coverage can be found in the FrescoTK documentation).

10 Christian Zirpins, Winfried Lamersdorf and Giacomo Piccinelli

3.2 Service instance management

Service instance management comprises organisation of participants and
resources for service instances. The FrescoTK Aggregator component evalu-
ates service schemata for involved roles and necessary resources (Figure 4).

Figure 4. FrescoTK Aggregator

During service execution, all roles have to be assigned to participants and
each of them has to provide the resources associated with its roles. An indi-
vidual strategy can be chosen for each service that specifies how to do role
assignment and resource creation in terms of schedule and execution model.

Figure 5. Capability Grid Architecture

In FrescoTK the SOA is based on OGSA (Foster et al., 2002) as the
component model. Thus, service related resources as well as schema man-

A Service Oriented Approach to Inter-Organisational Cooperation 11

agement, aggregation, and engine components are built as GRID services.
Engine components are realised by a BPEL engine that executes process
specifications generated by the schema manager (Figure 5). The engine is
wrapped as a grid component by adapters and proxies that are automatically
generated for each capability. They bridge the gap between stateless Web
Services and long lived Grid Services using the aggregator to resolve refer-
ences of individual resources.

4. CONCLUSION

As inter-organisational relationships and cooperation increase in ad-
vanced e-business (and other similar) applications both in terms of quantity
and of quality, the need for new classes of distributed applications arises that
allow their effective and efficient management. In this paper, we focus on
recurring cooperation scenarios between changing autonomous participants
and system support for them based on service-oriented distributed applica-
tions. While, in such a context, a suitable technological foundation is already
in place to interconnect the participants, adequate support for, e.g., planning,
building, and running such solutions is still missing.

Therefore, we propose a service model based on advanced Web service
and Grid Service technology and address a set of problems realising it within
a basic service engineering approach. This approach applies process theory
and workflow concepts to specify, aggregate, enact, and adapt services as
interaction patterns between distributed resources. In particular, we adopt a
homogeneous view on resources, coordination-, and engineering mecha-
nisms that allows for a degree of introspection and dynamic self-adaptation.

We claim that this concept is powerful enough to implement complex
service scenarios with customized requirements. In future work, we will use
the service engineering mechanisms to examine models and mechanisms for
service composition that allow relating and connecting the capabilities of
composite services to the capabilities of their service components.

5. REFERENCES

Baïna, K., Tata, S. and Benali, K. (2003) A Model for Process Service Interaction, In Busi-
ness Process Management International Conference, BPM 2003, Eindhoven, The Nether-
lands, June 26-27, 2003. Proceedings(Ed, Weske, M.) Springer, pp. 261 ff.

Bussler, C. (2002) Behavior abstraction in semantic B2B integration, In Conceptual Model-
ing for New Information Systems Technologies. ER 2001 Workshops. HUMACS, DASWIS,
ECOMO, and DAMA. Revised Papers Lecture Notes in Computer Science Vol.2465.
2002(Ed, Hunt, I.) Springer Verlag, Berlin, Germany, pp. 377-89.

12 Christian Zirpins, Winfried Lamersdorf and Giacomo Piccinelli

Casati, F., Sayal, M. and Ming Chien Shan (2001) Developing e-services for composing e-

services, In Advanced Information Systems Engineering. 13th International Conference,
CAiSE 2001. Proceedings Lecture Notes in Computer Science Vol.2068. 2001(Ed, Norrie,
M. C.) Springer Verlag, Berlin, Germany, pp. 171-86.

Chen, Q. and Hsu, M. (2000) Inter-Enterprise Collaborative Business Process Management,
HPL-2000-107, Software Technology Laboratory, HP Laboratories Palo Alto

Colombo, E., Francalanci, C. and Pernici, B. (2002) Modeling Coordination and Control in
Cross-Organizational Workflows, In Proc. CoopIS/DOA/ODBASE 2002(Eds, Meersmann,
R. and Tari, Z.) Springer, pp. 91 ff.

Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Thatte, S. and Weerawarana, S.
(2002) Business Process Execution Language for Web Services, V 1.0, BEA, IBM, Microsoft

Foster, I., Kesselman, C., Nick, J. and Tuecke, S. (2002) The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration, Open Grid Service Infra-
structure WG, Global Grid Forum

ISO/IEC-JTC1/SC21 (1995) Basic Reference Model of Open Distributed Processing -- Part3:
Architecture. International Standard, 10746-3, ISO

Mecella, M., Pernici, B., Rossi, M. and Testi, A. (2001) A Repository of Workflow Compo-
nents for Cooperative e-Applications, In Proceedings of the 1st IFIP TC8 Working Confer-
ence on E-Commerce/E-Business (Salzburg, Austria, 2001)BICE Press, pp. 73-92.

Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A. H. H. and Elmagarmid, A. K. (2003)
Business-to-business interactions: issues and enabling technologies, The VLDB Journal,
(Springer, Online First, April 3, 2003).

Michelis, G. D., Dubois, E., Jarke, M., Matthes, F., Mylopoulos, J., Papazoglou, M. P., Pohl,
K., Schmidt, J., Woo, C. and Yu, E. (1997) Cooperative Information Systems: A Manifesto,
In Cooperative Information Systems (Ed, Papazoglou, M., Schlageter, G.) Academic Press.

Perrin, O., Wynen, F., Bitcheva, J. and Godart, C. (2003) A Model to Support Collaborative
Work in Virtual Enterprises, In Business Process Management International Conference,
BPM 2003, Eindhoven, The Netherlands, June 26-27, 2003. Proceedings(Eds, Aalst, W. M.
P. v. d., Hofstede, A. H. M. t. and Weske, M.) Springer, pp. p. 104 ff.

Piccinelli, G., Zirpins, C. and Gryce, C. (2003a) A Provision-Centric Model for Electronic
Services, In IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE-2003)IEEE Computer Society, pp. 113-116.

Piccinelli, G., Zirpins, C. and Lamersdorf, W. (2003b) The FRESCO Framework: An Over-
view, In 2003 Symposium on Applications and the Internet Workshops (SAINT 2003 Work-
shops)IEEE Computer Society, pp. 120-123.

Schuster, H., Georgakopoulos, D., Cichocki, A. and Baker, D. (2000) Modeling and Compos-
ing Service-Based and Reference Process-Based Multi-enterprise Processes, In Proc CAiSE
2000(Ed, Bergman, L.) Springer, pp. 247-263.

Tsalgatidou, A. and Pilioura, T. (2002) An overview of standards and related technology in
Web Services, Distributed and Parallel Databases, 12, 135-62.

van der Aalst, W. M. P. (1999) Process-oriented architectures for electronic commerce and
interorganizational workflow, Information Systems, 24, 639-71.

van der Aalst, W. M. P. (2003) Don’t go with the flow: Web services composition standards
exposed, IEEE Intelligent Systems, 18.

WfMC, (2002) Workflow Management Coalition, http://www.wfmc.org, 1.5.2003

