

© 2002 Ninth Research Symposium on Emerging Electronic Markets 127

Software Architecture and Patterns for Electronic Commerce
Systems

André Widhani, Stefan Böge, Andreas Bartelt, and Winfried Lamersdorf

University of Hamburg, Department of Computer Science,
Distributed and Information Systems Group (VSIS)

bartelt@informatik.uni-hamburg.de

Abstract

Electronic Commerce is one of the most significant fields in internet appli-
cations. With the focus moving from B2C-commerce to B2B-commerce, in-
tegrating internet and legacy systems within one company and getting
technologies used in different companies to work together is a pretentious
task. After discussing the current research in software architecture, includ-
ing suitable notations for describing them, the aim of this paper is to derive
and identify patterns on an architectural level that are specific to the domain
of electronic commerce systems. In order to achieve this, we present two
case studies featuring selected architectural views on both online shop and
electronic procurement systems.

1 Introduction

Creating software systems in the domain of Electronic Commerce with a wide variety of
e-business models [Bartelt et al. 2001] is still a challenging task. Although a couple of
standard software packages as well as specialized, individual solutions exist, software
design know-how in this area is not well documented. Based on current research in
software architecture the usage of new patterns described in a suitable notation is pro-
posed. Patterns are derived and identified on an architectural level specific to the do-
main of electronic commerce systems. In order to achieve this, two case studies featur-
ing selected architectural views on both online shop and electronic procurement sys-
tems are presented.

André Widhani, Stefan Böge, Andreas Bartelt, and Winfried Lamersdorf: Software Architecture
and Patterns for Electronic Commerce Systems

128 © 2002 Ninth Research Symposium on Emerging Electronic Markets

2 Software Architecture

An important role for software architecture is to act as a mediator between the require-
ment analysis and definition phases and the rather fine-grained system design phase
which paves the road to implementation.

As such, a software architecture should not only describe the system in purely techni-
cal terms but also capture the language spoken within the domain the system is going
to be implemented in. In fact, it should be useful and understood (and understandable)
not only by technicians, but virtually any stake-holder involved.

As for many terms, there are a couple of definitions for software architecture. They are
not diametrically opposed, but rather emphasize different aspects of software architec-
ture. One of the more frequently used definitions is the following [Bass et al. 1997]:

The software architecture of a program or computing system is the struc-
ture or structures of the system, which comprise software components, the
externally visible properties of those components, and the relationships
among them.

One distinguishing feature is a high abstraction level. A software architecture should
describe the system on a broad level, before subsequent phases take the design proc-
ess into detail. This is illustrated by the fact that a component on an architectural level
does usually not match a single class or object.

Another vital point to the architecture of a software system is that it has no single face.
It is a collection of views on a system that vary both in viewing angle and abstraction
level. Commonly used views include functional view, deployment view, business proc-
ess view and others.

The functional view for example, will describe what functions need to be performed by
the system and what domain entities are involved. The functional view can be looked
upon from different detail or abstraction levels, and can be focussed on arbitrary sub-
systems or entities.

Not all views need to be relevant to all stake-holders. The mapping of software compo-
nents to hardware, which accommodates for availability and fail-over requirements is
probably not interesting for domain experts.

Software architecture depicts a software system by describing its constituting compo-
nents and their interactions. This description is usually performed for different views of
the systems.

To be able to effectively create a system’s software architecture, suitable tools and a
notation is required. During the 1990’s, a significant amount of research went into this
field. A number of notations where invented. These notations are known under the term
architecture description languages (ADL).

As mentioned earlier, different definitions of software architecture highlight different as-
pects of it. Most ADLs emphasize the composition aspect, with special attention to the
connectors which enable component interaction and promote the connector to a first-
class entity.

Till now, none of the ADLs have had a major impact on today’s software development.
One of the reasons accounting to this fact is probably their focus on modeling particular

André Widhani, Stefan Böge, Andreas Bartelt, and Winfried Lamersdorf: Software Architecture
and Patterns for Electronic Commerce Systems

© 2002 Ninth Research Symposium on Emerging Electronic Markets 129

types of systems. An ADL like Wright [Allen 1997] for example, enables the modeler to
perform deadlock analysis for component interaction.

An alternative approach is using the unified modeling language (UML) as a notation for
describing software architectures. The advantages are that it is widely known, com-
monly used and there are a couple of production level tool suites that are mature.

3 Patterns …

Patterns provide solutions for recurring problems, that have proved useful in practice.
They add the following benefits to software engineering:

• saving of time and cost because problems are not tackled from scratch

• deeper understanding and better ability of communication amongst stake-holders
because patterns often identify and define key terms of the problem

• increased quality and robustness of the actual solution, because it has been tested
and refined through repeated use in practice

Patterns like they were introduced by the now famous Gang of Four [Gamma et al.
1994] are largely design patterns. They usually solve a specific design problem within
the context of object oriented languages.

[Buschmann et al. 1996] use patterns to describe software architectures while [Fowler
1997] uses patterns to solve recurring problems in specific application domains.

They also introduce a hierarchy of patterns:

Architectural patterns describe a significant part of or view on a system. They some-
times define a certain style that is used throughout. One example is the model-view-
controller pattern used in interactive applications.

Design patterns solve problems that are closely related to a specific programming
paradigm. A significant part of literature related to patterns today focuses on design
patterns, and especially those that are being used in the context of object oriented pro-
gramming languages, in particular Java. These are patterns like façade, business
delegate, bridge pattern and many others.

Idioms are most low level, often fragments of code and applicable only to a certain pro-
gramming language. An example of an idiom is a reference counter for dynamically
created objects in C or C++, in order to support efficient memory management.

We propose another class of patterns, which we call domain patterns.

Unlike architectural patterns, which are rather technical and generic with respect to the
area the actual software system is being used in, domain patterns describe organiza-
tional structures or business processes that have proved useful within a particular ap-
plication domain. One example is the order process used in electronic commerce sys-
tems.

In the remainder of this paper the focus will be on domain patterns, which are particu-
larly useful in software architecture. They aid in establishing a common language, help
identify and document domain specific entities and processes and preserve knowledge
gained in subsequent software projects within a specific application domain.

André Widhani, Stefan Böge, Andreas Bartelt, and Winfried Lamersdorf: Software Architecture
and Patterns for Electronic Commerce Systems

130 © 2002 Ninth Research Symposium on Emerging Electronic Markets

4 … and Domain Architectures

In most cases the application domain for which a new software system is created ex-
isted long before - which means that the domain already has a certain set of standards
or reference literature and there is a defined vocabulary for entities and processes in
that domain.

It should be noted, though, that processes might change when adapted to information
systems and in some cases might even make new processes possible that did not exist
before, either because they would have been to costly or just not feasible. One exam-
ple is realtime order and delivery tracking.

Two case studies are presented which examine two vital elements of electronic com-
merce systems - the catalog and the order process. They are performed for both online
shops and electronic procurement systems in order to see where they differ and
whether reuse of architecture through patterns is possible with these two related appli-
cation areas. UML is used as a graphical notation, while the pattern description roughly
follows [Meszaros et al. 1996].

The Catalog is a central part of any Electronic Commerce system. There are a number
of different ways how to exactly organize products in a catalog. We try to give a blue-
print for the organization of a catalog, discuss alternatives and compare it with common
structures found in today’s commercial products like Intershop Enfinity and standard E-
Business formats like BMEcat, xCBL or cXML.

After looking at the catalog, which represents a rather static structure, the look is at a
dynamic (business) process which is the order process. The order process involves
user interaction with the front-end system as well as other systems in the background.

Existing deficiencies of UML are exposed and it is elaborated on the overall suitability
of UML, if applied to modeling on an architectural level.

5 Architectures for Electronic Commerce

Before proceeding to the case studies, short definitions for both online shop and elec-
tronic procurement systems are given.

The online shop [Bartelt et al. 1999] is probably the most prevalent type of electronic
commerce applications. Regarding involved actors, it is categorized as a B2C (Busi-
ness-to-Customer) application. The retailer is selling goods to consumers.

Electronic procurement systems enable business between non-private parties. More
precisely, a certain set of offerings is gathered from multiple vendors into a single view
for the customers. Today electronic procurement application are usually centered
around so called MRO goods (Maintenance, Repair and Operation), which are essen-
tially items that are not directly involved into the value added process. Furthermore,
electronic procurement applications are divided in two classes: supplier-centric sys-
tems and buyer-centric systems [Bruins et al. 2000; Georgantis et al. 2002].

In a supplier-centric system, the supplier manages and updates the catalog. This in-
volves no or little costs for the buying party, but makes the actual procurement activity
more complicated as soon as multiple vendors are involved.

André Widhani, Stefan Böge, Andreas Bartelt, and Winfried Lamersdorf: Software Architecture
and Patterns for Electronic Commerce Systems

© 2002 Ninth Research Symposium on Emerging Electronic Markets 131

In a buyer-centric system, the purchasing party manages the catalog of the procure-
ment system, which might be a part of the corporate intranet. Aggregating the contents
of several possibly different catalogs from multiple suppliers is challenging, to say the
least. The biggest advantage is the simplification for the purchaser, as he or she does
not need to visit multiple websites with different user interfaces. Also, the purchasing
party has full control on what catalogs or items are displayed for a particular user.

Another business model is the marketplace. Unlike online shops, where one vendor
serves multiple customers and electronic procurement, where one vendor servers one
customer at a time, in the marketplace multiple vendors interact with multiple clients.

5.1 Electronic Commerce Catalog Pattern

Context and Forces:

Before attempting to come up with a suitable structure for catalogs, we need to take a
look at the requirements. As the catalog is a means to organize products, these re-
quirements are of organizational nature:

• support nested categories

• items should be able to be assigned to multiple categories

• intelligently support variants of a base product (example: one item that is available
in different sizes).

• attributes of products should be flexible enough to support each products peculiari-
ties, but should also ease assignment of common attributes for all products or
products of a certain type

• compatibility with major classification schemes, like UN/SPSC [Unspsc 2002] or
Ecl@ss [Eclass 2002]

Solution:

A simple, straightforward model for the catalog is shown in figure 1.

The catalog serves as a root node. Below this root node we have a number of catego-
ries. Categories itself may be nested, the nesting may be of arbitrary depth. At the
same time categories may have products assigned to it. Note that there may be cate-
gories that have no products assigned to, but a product needs to be linked to at least
one category.

This structure fulfils the first two requirements that were proposed. Now we need to
take a look at the products attributes which fall into a set of different types of properties,
some of which are constrained in a certain way, while others have no such restrictions.

A suggested solution is shown in figure 2. There are properties that each and every
product has.

André Widhani, Stefan Böge, Andreas Bartelt, and Winfried Lamersdorf: Software Architecture
and Patterns for Electronic Commerce Systems

132 © 2002 Ninth Research Symposium on Emerging Electronic Markets

Figure 1: Basic Catalog pattern (UML class diagram)

We call them fixed attributes, and these are properties like manufacturer, identification
code and textual description. Product type attributes are those attributes that certain
kind of products have in common. An example for a product type attribute is the num-
ber of pages for a product type book. Note that we refer to product type, not categories.
Categories might or might not group products of the same type under one category.
Categories are presentation-oriented and are not necessarily related to product types.

The product type in our catalog pattern maps to the classification scheme used in the
mentioned standards mentioned above.

Finally, a base product may have variations of one product, that differ in color or size,
for example.

Variations:

Although not stated in the diagram, you would usually assign a price to a product varia-
tion, not the base product, because certain variations may be more expensive than
others. You may have a default price associated to a base product, though, in order to
avoid the need to specify it for each variation in case it is same.

Finally, there may be the need to assign attributes that are freely definable. We call
them custom attributes. This caters for information certain manufacturers specify, while
others that deliver products of the same type may not be able or willing to provide, or
that stem from different depth on information transported by different catalog exchange
formats, which particularly applies to electronic procurement applications gathering
data from a couple of source catalogs.

André Widhani, Stefan Böge, Andreas Bartelt, and Winfried Lamersdorf: Software Architecture
and Patterns for Electronic Commerce Systems

© 2002 Ninth Research Symposium on Emerging Electronic Markets 133

Figure 2: Electronic Commerce Catalog pattern (UML class diagram)

While this catalog pattern enables you to cope with most classification schemes in use
today, there are a number of subtle questions that need to be answered during the
planning and implementation of such a system. How do you assign products to multiple
categories? Does each of the affected categories have a reference to one and the
same product or is a new instance of this product being created alongside ? Note that
this is not an implementation level decision. It rather depends on whether one has the
requirement to assign different attributes depending on where the product is presented.

Currently available standard software packages handle this in different ways. Intershop
Enfinity [Intershop 2002] assigns products by reference. Hybris Jakarta [Hybris 2002]
allows you to have a copy of one product inherit all properties of the master product,
and explicitly lets you overwrite attributes as required.

The catalog pattern may be used equally well for online shop and electronic procure-
ment applications. The main difference does not lie in a suitable static structure, but
rather in the process of populating the catalog.

It can also be used with catalog exchange formats like BMEcat [Bmecat 2002]. BMEcat
has concepts and tags related to the catalog hierarchy, a so-called feature system that
maps to product type attributes and classification schemes and product variants as well
as user defined extensions that equal custom attributes in our catalog pattern.

André Widhani, Stefan Böge, Andreas Bartelt, and Winfried Lamersdorf: Software Architecture
and Patterns for Electronic Commerce Systems

134 © 2002 Ninth Research Symposium on Emerging Electronic Markets

Currently, there exist a number of standards for both classification and identification of
products. A classification scheme groups related items into same categories, whereas
an identification scheme assign unique codes to products in order to unambiguously
identify them. Discussions of various identification and classification schemes can be
found in [Beckmann et al. 2001] and [Granada 2001].

In supplier-centric electronic procurement applications, multiple catalogs are merged
into one catalog in the procurement system. The use of one and the same classification

scheme is essential for easy integration. If the source catalogs use different classifica-
tion schemes, the process of merging these becomes intricate. Possible solutions in-
clude an approach to map one grouping scheme to another, which is beyond the scope
of this paper.

Another difficulty lies in the diversity of catalog exchange formats. There are a couple
of possible strategies to map one catalog exchange format to another. Almost all of
them employ Extensible Stylesheet Language Transformations (XSLT), see [Buxmann
et al. 2001; Omelayenko et al.2001a; Omelayenko et al.2001b] for examples.

5.2 Order Process Pattern

Context and Forces:

After having browsed through the products, the customers eventually proceeds to the
order process. The requirements are simple:

• personal information of the purchaser, like payment and delivery details need to be
collected

• the purchaser should get a confirmation

• order information must be passed to the relevant systems or persons for fulfillment

Solution:

A straightforward order process for online shops is presented below in figure 3.

André Widhani, Stefan Böge, Andreas Bartelt, and Winfried Lamersdorf: Software Architecture
and Patterns for Electronic Commerce Systems

© 2002 Ninth Research Symposium on Emerging Electronic Markets 135

Figure 3: Order process for online shops (UML activity diagram)

The customer adds products to the basket and finally enters the order process. In an
online shop, the purchaser may or may not have registered or logged in. Online shops
usually defer the process of collecting personal information until absolutely needed in
order not to scare off potential buyers from browsing through the offerings.

The payment and delivery processes might be tightly integrated with the shop platform
through payment and ERP systems or might be handled manually.

Variations:

An electronic procurement application, particularly one that is buyer-centric, usually is
part of a corporate intranet. In this case, proper authentication is handled right from the
start in order to guarantee that the person is authorized to use the application.

Another significant difference is that electronic procurement applications need an addi-
tional workflow subprocess which is part of the order process itself, as seen in figure 4.
During this process, orders can be queued for manual approval and budget constraints
can be checked.

André Widhani, Stefan Böge, Andreas Bartelt, and Winfried Lamersdorf: Software Architecture
and Patterns for Electronic Commerce Systems

136 © 2002 Ninth Research Symposium on Emerging Electronic Markets

Figure 4: Authorization workflow for electronic procurement (UML activity diagram)

The order comprising of multiple products needs to be split into sets that correspond to
one supplier each. Finally, the system must be able to handle invoice and billing func-
tions.

6 Conclusion

The Unified Modeling Language has been used as notation throughout this paper. Us-
ing UML for architectural diagrams has drawbacks, though. First, there aren’t really
rules regarding what type of diagram to use for which kind of view, which stems from
the fact that UML has not been designed as an architectural notation in the first place.
The decision to choose the appropriate diagram type can be difficult for the person
creating these diagrams and confusing for people reading them, because they might,
for example, not be acquainted to class diagrams being used to describe domain enti-
ties which may or may not have anything to do with classes. Also, different people
might use a different type of diagram for one and the same view.

André Widhani, Stefan Böge, Andreas Bartelt, and Winfried Lamersdorf: Software Architecture
and Patterns for Electronic Commerce Systems

© 2002 Ninth Research Symposium on Emerging Electronic Markets 137

In lack of convincing alternatives, we would still recommend to go with UML. Architec-
tural issues are getting into the focus of UML’s driving forces, although proposals are
often not very concrete.

Regarding online shops and electronic procurement, it can be said that there exist pat-
terns which capture best practices within these application domains. During the proc-
ess of finding appropriate solutions it is important not to ignore concepts and reference
solutions as well as requirements that have already emerged over the time within the
application domain outside the context of information systems. These patterns can and
already do serve as building blocks for domain specific standard software packages
and frameworks.

The online shop is the predominant business model among electronic commerce appli-
cations existing today. Electronic procurement applications are emerging and most
vendors that offer standard software packages for online shops are extending them to
be used for electronic procurement.

Some requirements, like authorization workflow can be added with comparatively little
efforts. Integrating multiple catalogs, which possibly employ different classification or
identification schemes into a single application, though, is a major challenge.

References

Allen, Robert (1997): A Formal Approach to Software Architecture, in: Ph.D. Thesis,
CMU-CS-97-144, School of Computer Science, Carnegie Mellon University

Bass, Ken; Bass, Len; Clements, Paul; Kazman, Rick (1997): Software Architecture in
Practice, Addison-Wesley 1997

Bartelt, Andreas; Meyer, Jochen (1999): A Practical Guideline to the Implementation of
Online Shops, in: Bob Werner (Hrsg.): SRDS'99, IEEE Computer Society Press, pp.
348-353

Bartelt, Andreas; Lamersdorf, Winfried (2001): A Multi-Criteria Taxonomy of Business
Models in Electronic Commerce, in: L. Fiege, G. Mühl, and U. Wilhelm (Hrsg.):
Middleware 2001, WS on Electronic Commerce, Springer-Verlag, Berlin Heidelberg,
pp. 193-205

Bmecat (2002): Website of the eBusiness Standardization Committee,
http://www.bmecat.org (requested on August 15th, 2002). Some information can
only be retrieved after registration.

Bruins, Arnout; Steen, Maarten W.A.(2000): Electronic Procurement

Buschmann, Frank; Meunier, Regine; Rohnert, Hans; Sommerlad, Peter; Stal, Michael
(1996): A System of Patterns, John Wiley & Sons, 1996

Buxmann, Peter; Martin, Luis; Wüstner, Erik (2001): XML-based Supply Chain
Management – As SIMPLEX as it is –, Freiberg University of Technology, Chair of
Information Management

Eclass (2002) : Website: eCl@ss, http://www.eclass.de (requested on August 15th,
2002)

André Widhani, Stefan Böge, Andreas Bartelt, and Winfried Lamersdorf: Software Architecture
and Patterns for Electronic Commerce Systems

138 © 2002 Ninth Research Symposium on Emerging Electronic Markets

Fowler, Martin (1997): Analysis Patterns : Reusable Object Models, Addison Wesley,
1997

Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John (1994): Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 1994

Georgantis, N.P; Koutsomitropoulos, D.A.; Zafiris, P.; Papatheodorou, T. (2002): A
Review and Evaluation of Platforms and Tools for Building E-Catalogs

Granada Research (2001): Using the UN/SPSC – Why Coding and Classifying
Products is Critical to Success in Electronic Commerce

Hybris (2002): Website: http://www.hybris.com (requested on August 15th, 2002).
Some parts of the website are password-protected.

Intershop (2002): Website: www.intershop.com (requested on August 15th, 2002).
Some parts of the website are password-protected.

Meszaros, Gerard; Doble, Jim (1996): A Pattern Language for Pattern Writing, PloP ‘96
Proceedings

Omelayenko, Boris; Fensel, Dieter (2001a): A Two-Layered Integration Approach for
Product Information in B2B E-commerce, Division of Mathematics and Computer
Science, Vrije Universiteit, De Boelelaan 1081a, 1081hv, Amsterdam, The
Netherlands

Omelayenko, Boris; Fensel, Dieter (2001b): An Analysis of Integration Problems of
XML-Based Catalogs for B2B Electronic Commerce, Division of Mathematics and
Computer Science, Vrije Universiteit, De Boelelaan 1081a, 1081hv, Amsterdam,
The Netherlands

Otto, Boris; Beckmann, Helmut (2001): Klassifizierung und Austausch von
Produktdaten auf elektronischen Marktplätzen

UNSPSC 2002: United Nations Standard Products and Services Code, Website:
http://www.un-spsc.net (requested on August 15th, 2002)

